
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Learning iPhone Programming

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Learning iPhone Programming

Alasdair Allan

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

www.it-ebooks.info

http://www.it-ebooks.info/

Learning iPhone Programming
by Alasdair Allan

Copyright © 2010 Alasdair Allan. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Brian Jepson
Production Editor: Sarah Schneider
Copyeditor: Audrey Doyle
Proofreader: Kiel Van Horn

Indexer: Seth Maislin
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
March 2010: First Edition.

O’Reilly and the O’Reilly logo are registered trademarks of O’Reilly Media, Inc. Learning iPhone
Programming, the image of a lapwing, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

TM

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN: 978-0-596-80643-9

[M]

1267461377

www.it-ebooks.info

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://www.it-ebooks.info/

Table of Contents

Preface . xi

1. Why Go Native? . 1
The Pros and Cons 1

Why Write Native Applications? 2
The Release Cycle 3
Build It and They Will Come 4

2. Becoming a Developer . 5
Registering As an iPhone Developer 5
Enrolling in the iPhone Developer Program 7
The Apple Developer Connection 8
Installing the iPhone SDK 8
Preparing Your iPhone or iPod touch 11

Creating a Development Certificate 12
Getting the UDID of Your Development Device 14
Creating an App ID 15
Creating a Mobile Provisioning Profile 16
Making Your Device Available for Development 17

3. Your First iPhone App . 19
Objective-C Basics 19

Object-Oriented Programming 19
The Objective-C Object Model 21
The Basics of Objective-C Syntax 23

Creating a Project 23
Exploring the Project in Xcode 25
Our Project in Interface Builder 32
Adding Code 34
Connecting the Outlets in Interface Builder 36
Putting the Application on Your iPhone 37

v

www.it-ebooks.info

http://www.it-ebooks.info/

4. Coding in Objective-C . 41
Declaring and Defining Classes 41

Declaring a Class with the Interface 41
Defining a Class with the Implementation 42
Object Typing 43
Properties 44
Synthesizing Properties 45
The Dot Syntax 45
Declaring Methods 45
Calling Methods 46
Calling Methods on nil 47

Memory Management 47
Creating Objects 47
The Autorelease Pool 48
The alloc, retain, copy, and release Cycle 48
The dealloc Method 50
Responding to Memory Warnings 50

Fundamental iPhone Design Patterns 50
The Model-View-Controller Pattern 51
Views and View Controllers 51
The Delegates and DataSource Pattern 52

Conclusion 53

5. Table-View-Based Applications . 55
Simplifying the Template Classes 55
Creating a Table View 58

Organizing and Navigating Your Source Code 61
Connecting the Outlets 62

Building a Model 65
Adding Images to Your Projects 71

Connecting the Controller to the Model 73
Mocking Up Functionality with Alert Windows 74

Adding Navigation Controls to the Application 75
Adding a City View 79
Edit Mode 85

Deleting a City Entry 89
Adding a City Entry 90
The “Add New City...” Interface 93
Capturing the City Data 100

6. Other View Controllers . 107
Utility Applications 107

Making the Battery Monitoring Application 108

vi | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Tab Bar Applications 119
Refactoring the Template 120
Adding Another Tab Bar Item 122
Finishing Up 124

Modal View Controllers 125
Modifying the City Guide Application 126

The Image Picker View Controller 133
Adding the Image Picker to the City Guide Application 133

7. Connecting to the Network . 145
Detecting Network Status 145

Apple’s Reachability Class 145
Embedding a Web Browser in Your App 150

A Simple Web View Controller 150
Displaying Static HTML Files 159
Getting Data Out of a UIWebView 160

Sending Email 161
Getting Data from the Internet 166

Synchronous Requests 166
Asynchronous Requests 167
Using Web Services 168

8. Handling Data . 191
Data Entry 191

UITextField and Its Delegate 191
UITextView and Its Delegate 193

Parsing XML 195
Parsing XML with libxml2 196
Parsing XML with NSXMLParser 197

Parsing JSON 199
The Twitter Search Service 201
The Twitter Trends Application 202

Regular Expressions 213
Introduction to Regular Expressions 213

Storing Data 217
Using Flat Files 217
Storing Information in an SQL Database 218
Core Data 224

9. Distributing Your Application . 225
Adding Missing Features 225

Adding an Icon 225
Adding a Launch Image 227

Table of Contents | vii

www.it-ebooks.info

http://www.it-ebooks.info/

Changing the Display Name 231
Enabling Rotation 232

Building and Signing 233
Ad Hoc Distribution 233
Developer-to-Developer Distribution 240
App Store Distribution 240

Submitting to the App Store 241
The App Store Resource Center 244

Reasons for Rejection 244

10. Using Sensors . 249
Hardware Support 249

Determining Available Hardware Support 249
Setting Required Hardware Capabilities 251

Using the Camera 253
The Core Location Framework 254

Location-Dependent Weather 256
Using the Accelerometer 266

Writing an Accelerometer Application 268
Using the Digital Compass 272
Accessing the Proximity Sensor 274
Using Vibration 275

11. Geolocation and Mapping . 277
User Location 277
Annotating Maps 285

12. Integrating Your Application . 295
Application Preferences 295

Accessing Global Preferences 305
Custom URL Schemes 305

Using Custom Schemes 305
Registering Custom Schemes 306

Media Playback 310
Using the Address Book 314

Interactive People Picking 315
Programmatic People Picking 319

13. Other Native Platforms . 321
PhoneGap 321

Download and Installation 322
Building a PhoneGap Project 323

MonoTouch 325

viii | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Download and Installation 325
Building a MonoTouch Project 327

14. Going Further . 335
Cocoa and Objective-C 335

The iPhone SDK 335
Web Applications 336
Core Data 336
Push Notifications 337
In-App Purchase 338
Core Animation 339
Game Kit 339
Writing Games 339
Look and Feel 340
Hardware Accessories 340

Index . 343

Table of Contents | ix

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

The arrival of the iPhone changed everything. Or, at the very least, it changed the
direction of software development for mobile platforms, which is a pretty big thing. It
spawned an entire generation of copycat devices and shook an entire multibillion-dollar
industry to its knees. Despite this, it still fits in your pocket.

Who Should Read This Book?
This book gives a rapid introduction to programming for the iPhone and iPod touch
for those with some programming experience. If you are developing on the Mac for the
first time, drawn to the platform because of the iPhone, or alternatively you are an
experienced Mac programmer making the transition to the iPhone, this book is for you.

What Should You Already Know?
The book assumes some knowledge of C, or at least passing knowledge of a C-derived
language. Additionally, while I do give a crash course, some familiarity with object-
oriented programming concepts would be helpful.

What Will You Learn?
This book will guide you through developing your first application for the iPhone, from
opening Xcode for the first time to submitting your application to the App Store. You’ll
learn about Objective-C and the core frameworks needed to develop for the iPhone by
writing applications that use them, giving you a basic framework for building your own
applications independently.

xi

www.it-ebooks.info

http://www.it-ebooks.info/

What’s in This Book?
Here’s a short summary of the chapters in this book and what you’ll find inside:

Chapter 1, Why Go Native?
This chapter discusses the need for native applications and compares building
native applications to building web applications.

Chapter 2, Becoming a Developer
This chapter walks you through the process of registering as an iPhone developer
and setting up your work environment, from installing Xcode and the iPhone SDK
to generating the developer certificates you’ll need to build your applications and
deploy them onto your own iPhone or iPod touch.

Chapter 3, Your First iPhone App
This chapter allows you to get hands-on as quickly as possible and walks you
through building your first Hello World application, including how to deploy and
run the application on your iPhone or iPod touch.

Chapter 4, Coding in Objective-C
This chapter provides a crash course in the basics of the Objective-C language, and
if you’re familiar with another C-derived language (and perhaps with object-
oriented programming), it should be enough to get you up and running with
Objective-C and the Cocoa Touch frameworks.

Chapter 5, Table-View-Based Applications
The UITableView and associated classes are perhaps the most commonly used
classes when building user interfaces for iPhone or iPod touch applications. Due
to the nature of the applications, these classes can be used to solve a large cross
section of problems, and as a result they appear almost everywhere. In this chapter,
we dive fairly deeply into the table view classes.

Chapter 6, Other View Controllers
After discussing the table view controller in detail, we discuss some of the other
view controllers and classes that will become useful when building your applica-
tions: simple two-screen views, single-screen tabbed views, modal view controllers,
and a view controller for selecting video and images.

Chapter 7, Connecting to the Network
This chapter discusses connecting to the Internet, browsing the Web, sending
email, and retrieving information.

Chapter 8, Handling Data
This chapter discusses how to handle data input, both from the application user
and programmatically, and how to parse XML and JSON documents. The chapter
also covers storing data in flat files and storing data with the SQLite database
engine.

xii | Preface

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9, Distributing Your Application
This chapter talks about how to add some final polish to your application and
walks you through the process of building your application for distribution, either
via ad hoc distribution or for the App Store.

Chapter 10, Using Sensors
This chapter discusses how to determine what hardware is available and illustrates
how to deal with the major sensors on the iPhone and iPod touch: the
accelerometer, magnetometer, camera, and GPS.

Chapter 11, Geolocation and Mapping
This chapter walks you through the process of building applications that make use
of the Core Location and MapKit frameworks.

Chapter 12, Integrating Your Application
This chapter shows you some of the tricks to integrate your application with the
iPhone’s software ecosystem, how to present user preferences with Settings Bun-
dles, and how to use custom URL schemes to launch your application. It also
discusses how to make use of the Media Player and Address Book.

Chapter 13, Other Native Platforms
This chapter deals with the PhoneGap and MonoTouch platforms for building
native applications for the iPhone and iPod touch that can be sold on the App Store.
The chapter then walks you through the installation process and building your first
Hello World application for both platforms.

Chapter 14, Going Further
This chapter provides a collection of pointers to more advanced material on the
topics we covered in the book, and material covering some of those topics that we
didn’t manage to talk about in the book.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords

Constant width bold
Shows commands or other text that should be typed literally by the user

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context

Preface | xiii

www.it-ebooks.info

http://www.it-ebooks.info/

This icon signifies a tip, suggestion, or general note.

This icon signifies a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Learning iPhone Programming, by Alasdair
Allan. Copyright 2010 Alasdair Allan, 978-0-596-80643-9.”

If you feel your use of code examples falls outside fair use or the permission given here,
feel free to contact us at permissions@oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://oreilly.com/catalog/9780596806439

Supplementary materials are also available at:

http://www.learningiphoneprogramming.com/

xiv | Preface

www.it-ebooks.info

mailto:permissions@oreilly.com
http://oreilly.com/catalog/9780596806439
http://www.learningiphoneprogramming.com/
http://www.it-ebooks.info/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://www.oreilly.com

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

Acknowledgments
Books do not write themselves, but a book is also not the work of just a single person,
despite what it may say on the front cover. I’d like to thank my editor, Brian Jepson.
His hard work and constant prodding made the book better than it might otherwise
have been. I’d also like to offer more than thanks to my long-suffering wife, Gemma
Hobson. Without her support, encouragement, and willingness to make those small
(and sometimes larger) sacrifices that an author’s spouse has to make, this book
wouldn’t be in your hands today. Thank you. Finally to my son, Alex, who is as yet too
young to do more than chew on the cover, daddy’s home. I can only hope for your sake
that O’Reilly uses tasty paper.

Preface | xv

www.it-ebooks.info

mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

Why Go Native?

When the iPhone was introduced, there was no native SDK. Apple claimed that one
wasn’t needed and that applications for the device should be built as web applications
using JavaScript, CSS, and HTML. This didn’t go down well with the developer com-
munity; they wanted direct access to the hardware and integration with Apple’s own
applications.

Only a few months after the iPhone’s release, the open source community had accom-
plished something that many thought impossible. Despite Apple locking the device
down, developers had gained access, reverse-engineered the SDK, and gone on to build
a free open source tool chain that allowed them to build native applications for the
device. At one point, it was estimated that more than one-third of the iPhones on the
market had been “jail broken” by their users, allowing them to run these unsanctioned
third-party applications.

This open source development effort is ongoing today, and if you want to know more,
I recommend iPhone Open Application Development, Second Edition by Jonathan
Zdziarski (O’Reilly). However, the book you hold in your hands isn’t about the open
source “hacker” SDK, because in March 2008 Apple publicly changed its mind and
released the first version of the native SDK to a waiting developer community. Whether
this release was in response to this effort, or perhaps because it was (the notoriously
secretive) Apple’s plan all along, we’ll probably never know.

The Pros and Cons
When the native SDK was introduced, a number of people in the industry argued that
it was actually a step backward for developers. They felt that web-based applications,
especially once home screen icons for these applications arrived on the 1.1.3 firmware,
were good enough. By writing code specifically for the iPhone in Objective-C, you were
making it more difficult to port your applications, and porting a web application more
or less consisted of simply restyling it using a new CSS template.

1

www.it-ebooks.info

http://oreilly.com/catalog/9780596155209/
http://www.it-ebooks.info/

It seemed that the users of the applications disagreed. It’s arguable why this is the case,
but it’s very hard to make native-looking web applications that can be reused across
many different platforms, though it is possible. Just as applications on the Mac desktop
that have been ported from Windows tend to stand out like a sore thumb by not quite
working as the user expects, web applications, especially those that are intended to be
used across different platforms, tend to do the same.

If you integrate your application into the iPhone ecosphere, make use of the possibilities
that the phone offers, and optimize your user interface (UI) for the device, the user
experience is much improved. It’s also really hard to write web applications that work
well when you need to design for a smaller screen, implying as it does a simpler UI and
less exposed functionality, without using native controls.

Why Write Native Applications?
The obvious reason to use the native SDK is to do things that you can’t do on the Web.
The first generation of augmented reality applications is a case in point; these needed
close integration with the iPhone’s onboard sensors (e.g., GPS, accelerometer, digital
compass, and camera) and wouldn’t have been possible without that access. Although
the iPhone’s Safari browser supports the new geolocation capabilities HTML 5 pro
vides, this doesn’t alleviate the problem entirely. It’s doubtful that all platform-specific
hardware is going to get the same sort of treatment, so it’s unlikely that you will see the
arrival of augmented reality web applications.

If you are coming from a web development background, you may be
interested in the cross-platform PhoneGap framework. This framework
provides native wrapper classes and allows you to build native applica-
tions in HTML/JavaScript on a range of mobile platforms. One of the
platforms it targets is the iPhone. I talk about PhoneGap, and the other
alternative native development platforms for the iPhone, in Chapter 13.

Sometimes it’s not about doing things that can’t be done; it’s about doing things faster,
and doing client-side error handling. For instance, the Apple iTunes and App Store
applications that are provided with the iPhone are actually web applications wrapped
inside native applications. Just like the iTunes Store on the Mac, the main display you
see is a web page, but the surrounding infrastructure is a native application. This means
that while the application can’t do a lot without an Internet connection, it can at least
start up.

But those are extreme examples. A lot of the applications in the App Store combine
remote data and native interfaces. Without access to the network, some of the UI is
generally disabled. However, native applications can be built to degrade gracefully
when the device’s network connection disappears or if it was never present in the first

2 | Chapter 1: Why Go Native?

www.it-ebooks.info

http://www.w3.org/TR/geolocation-API/
http://www.w3.org/TR/geolocation-API/
http://phonegap.com/
http://www.it-ebooks.info/

place. The user can still use the bits of the application that don’t need a network con-
nection to work.

Sometimes it’s also about what an application doesn’t need. If it doesn’t need a network
connection, the idea that your phone needs to be connected to the network to use it,
sucking extra battery power in the process, is wasteful. Even when it is connected, the
device isn’t always connected to a fast Internet connection. Anything you can do to
minimize the amount of data you need to suck down the data connection will improve
users’ interaction with your application. That means generating your UI locally, and
populating it with data pulled from the Internet.

Network performance will affect the user’s perception of speed; rendering your UI
while a web request is made to populate it allows your application to remain responsive
to user interaction even while it’s waiting for the network. That can only be a good
thing.

I haven’t even mentioned game development yet, and with Apple pitching the iPod
touch as “the funnest iPod ever,” that’s important. You cannot develop the sorts of
games now starting to appear on the App Store using web-based technologies. While
this book covers the basics of how to program for the iPhone or iPod touch, if you
want to delve deeply into game programming on the platform, I recommend iPhone
Game Development by Paul Zirkle and Joe Hogue (O’Reilly).

The Release Cycle
Paul Graham, one of my favorite dispensers of wisdom, argues that the arrival of web-
based software has changed not just the user experience, but the developer experience
as well:

One of the most important changes in this new world is the way you do releases. In the
desktop software business, doing a release is a huge trauma, in which the whole company
sweats and strains to push out a single, giant piece of code. Obvious comparisons suggest
themselves, both to the process and the resulting product.

—From “The Other Road Ahead” by Paul Graham

He is exactly right. Working in the cloud, you rarely make a software release in the old
sense of the word. Despite the benefits, I must admit I actually somewhat miss the “big
push” where, usually with a great deal of trepidation, you roll out a new, improved
version of a piece of software. However, one problem with writing native applications
is that we’ve made a return to the release cycle.

With web-based software you can make incremental releases, fixing bugs when and if
they occur. Native applications are far more like desktop software.

I cover the details of how to submit applications to the App Store in Chapter 10. How-
ever, you should prepare yourself now for some amount of pain. The review process is
notoriously opaque, and it can (and does) take time. Plus, each of your applications

The Release Cycle | 3

www.it-ebooks.info

http://oreilly.com/catalog/9780596159863/
http://oreilly.com/catalog/9780596159863/
http://www.it-ebooks.info/

must go through it, not just when you initially submit it to the store, but also for each
new version you release. Typically, it can take up to 14 days from submitting your
application for it to be approved (or rejected) by the review team, although it can take
much longer. Based on my experience, although some of my applications have sailed
through the submission process in only a couple of days, I have had applications in the
review process for up to four months before receiving approval.

Build It and They Will Come
Of course, the big advantage, even with today’s crowded App Store, is exposure. If
nobody can find your application, nobody can pay for it, and the Web is a big place.
One big advantage a native application has over a web application is that it’s easier for
potential users to find, and much easier to pay for when they find it. That is, if you can
get people to pay for web applications at all. People don’t impulse-subscribe to a web
service; they impulse-buy from the App Store.

However, don’t assume that if you build it, users will appear. Unless you’re really lucky
and your application goes viral, you still need to market your application. The App
Store may be a lot smaller than the Web, but it’s still a pretty big place.

Marketing your application is like marketing any product; you need to make use of the
tools available and your contacts to get news of your software to your target market.
Apple provides promotional codes for your application (although at the time of this
writing, these work only on the U.S. App Store) that will give free downloads of your
applications. Many developers reach out to high-profile blogs or the many application
catalog sites and offer them review copies in hopes that they will publicize the appli-
cation. If it’s well designed and useful, they might well be interested in reviewing it.

Produce a screencast showing how your application works and how to use it. Also,
applications with good support resources (such as forums and trouble-ticket systems)
sell more copies. Applications with good design stand out in the store and sell more
copies.

Good design often means that you do things “the Apple way.” Integrate your applica-
tion well with the other applications on the phone. Don’t reinvent the wheel: use the
standard widgets and UI elements familiar to iPhone users.

4 | Chapter 1: Why Go Native?

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

Becoming a Developer

Before you start writing code, you need to do some housekeeping. First, you’ll need to
install Xcode, Apple’s development environment, as well as the iPhone SDK. Both of
these are available directly from Apple, although you may already have Xcode on your
Mac OS X install DVD. However, before you can install the iPhone SDK, you’ll have
to register with Apple as a developer. If you enroll in one of the developer programs,
you’ll also need to create, download, and install a number of certificates and profiles
to allow you to deploy your applications onto your iPhone or iPod touch. Let’s get these
housekeeping tasks out of the way now so that you can get to the interesting bit—the
code—as quickly as you can.

Developing applications for the iPhone requires an Intel Mac running
Mac OS X 10.5 (Leopard) or later.

Registering As an iPhone Developer
Before you can develop for the iPhone, you need to become a registered iPhone devel-
oper so that you can download and install the iPhone SDK. This will give you access
to the SDK and allow you to build and test your applications in iPhone Simulator.

If you take it a step further and enroll in the iPhone Developer Standard or Enterprise
Program (both of these have a yearly fee), you’ll be able to test applications on your
own iPhone or iPod touch. We will discuss how to enroll in these programs in the next
section.

If you choose the free account, you won’t be able to install your applications onto your
own iPhone or iPod touch, nor will you be able to sell applications on Apple’s App
Store (Standard Program) or distribute them to people within your own company
(Enterprise Program). If you stick with a free account, you also won’t have access to
prerelease versions of the iPhone SDK or the iPhone OS.

You can sign up at http://developer.apple.com/iphone/.

5

www.it-ebooks.info

http://developer.apple.com/iphone/
http://www.it-ebooks.info/

If you are an existing Apple Developer Connection (ADC) member, or
if you have an iTunes or MobileMe account, you can use your existing
Apple ID to register as an iPhone developer. However, if you intend to
sell software commercially, you may want to create a new identity for
use with the program to keep it separate from your existing Apple ID.

You’ll initially be asked to either choose an existing Apple ID or create a new one. If
you create a new one, you’ll be asked for some details (e.g., email and physical ad-
dresses); if you choose an existing Apple ID, you’ll still need to confirm some of these
details, although they should be filled in with the most recent information Apple has.

You’ll also be asked to provide a professional profile, indicating what sort of applica-
tions you’ll be developing and whether you also develop for other mobile platforms.

Finally, you’ll need to agree to the developer license. After you do, a verification code
may be sent to the email address you registered with Apple, although this doesn’t hap-
pen in all cases. However, if this happens to you, the final step of registering as an
iPhone developer will be to verify your email address.

Apple Websites
You’ll use four main websites as part of the iPhone development process:

The iPhone Dev Center
This site is where you can get access to the latest versions of the iPhone SDK, along
with background technical information, API documentation, sample code, and
instructional videos. You need to be a registered iPhone developer to access the site.

The Developer Program Portal
This site is where you can generate and manage the certificates, provisioning pro-
files, approved devices, and other housekeeping tasks necessary to test your ap-
plications on the iPhone and iPod touch and prepare them for distribution. You’ll
need to be both a registered iPhone developer and enrolled in one of the iPhone
Developer Programs to access this site.

The App Store Resource Center
This site provides help and advice on how to distribute your application on the
App Store, including preparing your app for submission, understanding the App
Store approval process, and learning how to manage your apps on the App Store.
You’ll need to be both a registered iPhone developer and enrolled in the iPhone
Developer Standard Program to access this site.

iTunes Connect
This site provides you with the tools to manage your applications on the iTunes
App Store and your contracts with Apple. You’ll need to be both a registered
iPhone developer and enrolled in the iPhone Developer Standard Program to access
this site.

6 | Chapter 2: Becoming a Developer

www.it-ebooks.info

http://developer.apple.com/iphone/
http://developer.apple.com/iphone/manage/overview/index.action
http://developer.apple.com/iphone/appstore/
https://itunesconnect.apple.com/
http://www.it-ebooks.info/

Enrolling in the iPhone Developer Program
If you intend to sell your applications on the App Store, or you just want to be able to
deploy them onto your own iPhone or iPod touch, you’ll also need to enroll in the
iPhone Developer Program. If you’ve not already registered as an iPhone developer,
you can do that during this process.

Your iPhone Developer Program membership lasts for 1 year and can
be renewed starting 60 days before the expiration date of your existing
membership. If you do not renew your membership, your ability to dis-
tribute your applications will be curtailed. In addition, your developer
and distribution certificates will be revoked. Finally, any applications
you have on the iTunes App Store will be removed.

You have two options when enrolling in the iPhone Developer Program. Most people
will want to register for the Standard Program, which costs $99 per year. This will allow
you to create free—or, once you’ve filled out some paperwork, commercial—
applications for the iPhone and iPod touch, and distribute them either via the App Store
or via the ad hoc distribution channel where you provide both the application binary
and a provisioning certificate to the end user.

Ad hoc distribution allows you to distribute your application directly to
your users, bypassing the App Store. However, distribution is limited
to just 100 devices during the course of your one-year membership and,
at least for the end user, is more complicated than distributing your
application via the App Store. It’s mainly intended for beta testing pro-
grams, and it isn’t a substitute for publishing your application to the
store. If you need to conduct large-scale rollouts to a specific group of
users and you want to avoid the App Store, you should probably look
at the Enterprise Program.

The more expensive Enterprise Program, at $299, is intended for companies with more
than 500 employees that wish to create applications for in-house distribution. While
this program allows you to distribute your applications inside your own company, it
does not allow you to publish them for sale on the App Store. If you’re thinking about
selling your applications to the public, you need the Standard Program.

An iPhone Developer University Program is also available, but this is designed specif-
ically for higher education institutes looking to introduce iPhone development into
their curricula. Unless you’re an academic at such an institute, it’s unlikely that this
program will be applicable to you.

Enrolling in the iPhone Developer Program | 7

www.it-ebooks.info

http://developer.apple.com/iphone/program/university.html
http://www.it-ebooks.info/

The Apple Developer Connection
As well as enrolling as a member of the iPhone Developer Program, you may also wish
to register as a member of the Apple Developer Connection. Doing so is a good idea if
you’re serious about developing with the Mac, and all but the free membership tiers
will give you access to the Software Seeding Program, which provides prerelease copies
of both the Mac OS X operating system and Apple’s developer tools. You can sign up
for ADC at either http://developer.apple.com or https://connect.apple.com.

Three membership plans are available: a free online membership, the $500 Select
membership, and the Premier membership that costs several thousand dollars (al-
though it also includes a ticket to the Apple Worldwide Developers Conference).

Installing the iPhone SDK
Once you have registered as an iPhone developer, you can log in to the iPhone Dev
Center and download the iPhone SDK.

At the time of this writing, Apple combined the iPhone SDK and Xcode
into a single download. It is possible that in future releases you may
need to install Xcode first, and then install the iPhone SDK from a sep-
arate installer.

Newer prerelease beta versions of the SDK may be available to those enrolled in the
iPhone Developer Program; however, the current stable version will be available even
if you choose not to pay to enroll in the program.

The combined download of the Xcode development tools and the iPhone SDK is around
2.5 GB in size. The combined bundle will be downloaded as a disk image file. After it
downloads, the image should automatically mount; double-click on the iPhone SDK
and Tools package file to install the SDK, as shown in Figure 2-1.

The installer will ask you to agree to the terms of the software license agreement before
prompting you to install the software. You should install it in the suggested location,
and the default installation options will include everything you need to develop appli-
cations for the iPhone or iPod touch. However, you’ll need at least 5.9 GB of free space
on your disk to install the Xcode developer tools and the iPhone SDK.

After installation, you can check that everything has gone OK by starting Xcode, which
will have been installed in the /Developer/Application folder on your machine. Project
templates should be available for the iPhone OS, as shown in Figure 2-2.

You now have everything you need to write applications and test them in the simulator.

8 | Chapter 2: Becoming a Developer

www.it-ebooks.info

http://developer.apple.com
https://connect.apple.com
http://www.it-ebooks.info/

If you want to test your code on an actual iPhone, you will need to enroll
in either the Standard or Enterprise iPhone Developer Program. How-
ever, the amount of time it takes to be accepted into the program varies,
so after you enroll and have been accepted, you should bookmark this
page and finish the steps in this chapter. You can use iPhone Simulator
for the examples in this book while you wait to be accepted.

While the simulator is very good, it’s not perfect. Code runs much faster on the simu-
lator than it does on the device. If you’re dealing with applications that have a com-
plicated UI or consume a great deal of processor power, the difference in performance
between the simulator and the device could become important. On several occasions
I’ve had to go back and rewrite my code and refactor the way in which my UI functions;
when I tested my application on the simulator it worked fine, but on real hardware it
just ran too slowly. You can also allocate much more memory in the simulator than is
available on the real hardware.

Additionally, some frameworks are available to you in the simulator—notably the
NSPredicate and NSXMLDocument classes—that just don’t exist on the device. Code that
uses these missing classes will compile and run on the simulator, but not on the device.
As well as regularly building your application in iPhone Simulator, it’s therefore a good
idea to do regular device builds. If you accidentally use one of these “missing” classes,
it will show up as a link error at compile time for such a build. After all, you don’t want
to get too far down the road of developing your application only to discover (hours, or

Figure 2-1. Installing the Xcode development tools and the iPhone SDK

Installing the iPhone SDK | 9

www.it-ebooks.info

http://www.it-ebooks.info/

worse yet, days later) that you’re using classes or frameworks that aren’t actually
present on the device.

Both NSPredicate and NSXMLDocument are commonly used classes. For
instance, NSXMLDocument is the class most people programming in
Objective-C on the Mac (rather than the iPhone) would use to perform
an XQuery on an XML document. The lack of NSXMLDocument is some-
thing that most developers notice quite quickly.

While I’ve seen some complaints that the simulator can sometimes be slightly off on
pixel alignment of UIKit elements, I’ve not yet come across this myself. However, when
using lower-level graphics libraries, such as OpenGL ES, the renderer used on the
iPhone and iPod touch is slightly different from the one used in the simulator, so when
a scene is displayed on the simulator it may not be identical to the actual device at the
pixel level.

Additionally, the simulator has some built-in limitations. For instance, if your appli-
cation’s UI is designed to respond to touch events with more than two fingers, you
can’t test it in the simulator.

Figure 2-2. The Xcode New Project window

10 | Chapter 2: Becoming a Developer

www.it-ebooks.info

http://www.it-ebooks.info/

While it doesn’t allow you to simulate gestures requiring many fingers,
iPhone Simulator does allow you to test applications that require two-
finger (multitouch) touch gestures. You can use Option-click (for pinch)
or Option-Shift-click (for drag) while using the mouse to get two
“fingers.”

Furthermore, you will not have access to the accelerometer, GPS, Bluetooth, or digital
compass when running your application in the simulator. If your application relies on
these hardware features, you have no choice but to test it on your device.

Preparing Your iPhone or iPod touch
Before you can install applications onto your iPhone or iPod touch, you must follow a
number of steps, and you’ll need to do so in the order shown in Figure 2-3.

Figure 2-3. The workflow for creating certificates and mobile provisioning profiles

So, if you have enrolled in either the Standard or Enterprise iPhone Developer Program,
now is the time to generate the appropriate certificates and provisioning profiles so that
you will be able to deploy the test application from the next chapter onto your device.

Certificates and Provisioning Profiles
You must have a development certificate for Xcode to sign your application binaries.
This certificate also identifies you as a developer. When you build your iPhone appli-
cation, Xcode will look in your Mac OS X keychain for this certificate and the corre-
sponding certificate from Apple, called the WWDR Intermediate certificate, which
you’ll also need to download from the Developer Portal.

Provisioning profiles associate a development certificate, and hence a developer, with
a hardware device and an iPhone application ID, which is a unique identifier for your
application. To install an application that you’ve signed with your development
certificate onto your iPhone or iPod touch, you need to install the associated provi-
sioning profile onto your device.

Preparing Your iPhone or iPod touch | 11

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Development Certificate
The first thing you need is a development certificate and Apple’s WWDR Intermediate
certificate. To request a development certificate from the Developer Portal, you need
to generate a certificate-signing request (CSR) using the Keychain Access application.

You can find the Keychain Access application in the /Applications/Utilities folder.
Launch the application and select Keychain Access→Preferences from the menu. Go to
the Certificates Preferences pane to confirm that the Online Certificate Status Protocol
(OCSP) and Certificate Revocation List (CRL) options are turned off, as shown in
Figure 2-4.

Figure 2-4. The Certificates tab of the Keychain Access application’s Preferences pane

Next, select Certificate Assistant→Request a Certificate from a Certificate Authority
from the Keychain Access menu, and enter the email address that you selected as your
Apple ID during the sign-up process along with your name, as shown in Figure 2-5.
Click the “Saved to disk” and the “Let me specify key pair information” radio buttons
and then click Continue. You’ll be prompted for a filename for your certificate request.

Accept the defaults (a key size of 2,048 bits using the RSA algorithm) and click Con-
tinue. The application will proceed to generate a CSR file and save it to disk. The file
will be saved to the location you specified when you were prompted to choose a file-
name (the default is usually your desktop).

Next, log in to the iPhone Dev Center and click on the link to the iPhone Developer
Program Portal. This will take you to the main portal used to manage certificates and
devices associated with your developer program account.

Click the Certificates link, then go to the Development tab and click Request Certifi-
cate. Follow the instructions to upload your CSR file to the portal.

If you joined the iPhone Developer Program as an individual, you now need to approve
your own certificate request, again in the Development tab in the Certificates section
of the portal (simply click Approve). If you are part of a development team, your nom-
inated team admin must do this for you.

12 | Chapter 2: Becoming a Developer

www.it-ebooks.info

http://developer.apple.com/iphone/
http://www.it-ebooks.info/

If you don’t see the Download option appear after you click Approve,
click the Development tab link to refresh the page, and it should appear.

Once you do this, you need to download your personal certificate and the WWDR
Intermediate certificate and install them in your Mac OS X keychain.

Still in the Development tab, click the Download button to download your personal
certificate. Next, right-click on the link to the WWDR Intermediate certificate and save
the linked file to disk.

Once both of these certificates have downloaded to your local machine, you need to
install them in your Mac OS X keychain. Double-click on the certificate files to install
them into your keychain. This will activate the Keychain Access application and ask
you to confirm that you want to add the certificates to your Mac OS X keychain.

Figure 2-5. The Keychain Access.app Certificate Assistant

Preparing Your iPhone or iPod touch | 13

www.it-ebooks.info

http://www.it-ebooks.info/

If you have more than one keychain, you need to make sure the certifi-
cates are installed in the default keychain, normally called login. The
default keychain is highlighted in bold in the list of keychains at the top
left of the Keychain Access.app application. It’s normally best to keep
the login keychain the default, but if this is not the case you can make
it the default by selecting the File→Make Keychain “login” Default op-
tion from the menu bar. If the certificates are not installed into the de-
fault keychain, Xcode will be unable to find them, and hence will be
unable to sign binaries with them. This means you will not be able to
install your applications onto your iPhone or iPod touch.

You can check that the two certificates have been correctly installed in your keychain
by clicking on the Certificates category in the Keychain Access application. You should
see both your own developer certificate and Apple’s WWDR certificate in the login
keychain, as shown in Figure 2-6.

Figure 2-6. The Keychain Access application showing the newly installed certificates necessary for
Xcode to sign your binaries and deploy them onto your iPhone

Getting the UDID of Your Development Device
Plug the iPhone or iPod touch you intend to use for development into your Mac. Open
Xcode and select the Window→Organizer item from the menu bar. The Organizer
window will open, showing the list of connected devices (see Figure 2-7).

You’ll need the unique device identifier (UDID) of your development device so that
you can create a mobile provisioning profile for this device. Right-click or Ctrl-click on
the 40-character string labeled Identifier (see Figure 2-7) and select Copy.

14 | Chapter 2: Becoming a Developer

www.it-ebooks.info

http://www.it-ebooks.info/

Return to the iPhone Developer Program Portal, click Devices, and select the Manage
tab. Next, click Add Devices. Enter the device name in the appropriate box and the
UDID in the box labeled Device ID, and click Submit. You have now registered your
device.

Creating an App ID
To install your application onto your iPhone or iPod touch, you will need to create an
App ID. This is a unique identifier that the iPhone uses to grant your application access
to its section of the keychain, limiting the application’s access to usernames, passwords,
and certificates used by other applications.

The App ID is also used as part of the mobile provisioning profile. The mobile provi-
sioning profile is different from the certificate you generated earlier. Certificates stay in
the keychain on your Mac and are used by Xcode to digitally sign the iPhone application
binaries. The mobile provisioning profile you’re about to generate is tied to one or more
devices and is transferred by Xcode onto your iPhone or iPod touch. This allows the
applications you create to run on that device.

Go to the App IDs section of the iPhone Developer Program Portal, select the Manage
tab, and click on New App ID. Enter a name for your App ID; this should be a human-
readable name used to refer to this particular App ID. It’s entirely arbitrary what you
use as the name for the App ID. Since this is your first App ID, for the Bundle Seed ID
select Generate New.

Finally, enter a Bundle Identifier. This must be unique, and most developers use a
reversed version of their domain name so that this is the case. For instance, my domain
name is babilim.co.uk, so I entered uk.co.babilim.* as my Bundle Identifier.

Figure 2-7. The Xcode Organizer window

Preparing Your iPhone or iPod touch | 15

www.it-ebooks.info

http://www.it-ebooks.info/

The asterisk (*) that appears at the end of my Bundle Identifier is the
wildcard symbol. Using a * in the Bundle Identifier means you will be
able to use this App ID for multiple applications. If you did not use a
wildcard here, you’d have to generate a new App ID for each of your
applications, and a new provisioning profile for each of these applica-
tions, before you could deploy your application onto your iPhone or
iPod touch. Using a wildcard means you can generate a single mobile
provisioning profile that will allow you to deploy multiple applications
onto your developer device.

Technically, this means that all the applications created using this Bun-
dle Identifier will share the same portion of the keychain on your iPhone.
I discuss the implications of this later. Using a wildcard in the Bundle
Identifier also means that the applications you create using this App ID,
and the mobile provisioning profile(s) associated with it, will not be able
to use the Apple Push Notification and in-app purchase services.

Click Submit. The portal will now generate a new 10-character Bundle Seed ID and
prepend it to the Bundle Identifier you provided. This is your App ID.

You need to make a note of your Bundle Identifier as you’ll need to supply it to Xcode,
as described near the end of Chapter 3, to allow you to deploy the application you are
developing onto your iPhone or iPod touch.

Creating a Mobile Provisioning Profile
Now you’re ready to create a mobile provisioning profile. Go to the Provisioning section
of the iPhone Developer Program Portal, select the Development tab, and click on New
Profile.

Enter a profile name. While it’s more or less arbitrary what you put here, I recommend
using “Developer Profile” somewhere in the name. You may be generating a number
of provisioning profiles, including ones later on for distribution (both ad hoc and to
the App Store), so it’s helpful to know that this profile is to be used for development.

Check the relevant certificate box: if you’re an independent developer, you’ll have
only one choice here, the certificate you generated earlier using the Keychain Access
application.

Select the App ID you generated in the previous section, and then select the develop-
ment device (or devices if you have more than one available) for which this profile will
be valid. As I mentioned before, Xcode will transfer the provisioning profile onto your
iPhone or iPod touch, and application binaries built by Xcode using a provisioning
profile will run successfully only on devices for which this profile is valid. If you don’t
select the correct device here, your code will not run on it. Don’t worry, though: you
can add additional devices to the profile at any time, but you’ll need to regenerate a
provisioning profile inside the Program Portal.

16 | Chapter 2: Becoming a Developer

www.it-ebooks.info

http://www.it-ebooks.info/

Click Submit to generate the new mobile provisioning profile that you’ll use during
development. I discuss provisioning profiles needed for distributing your applications
later in the book. The status will appear as pending; click the Development tab to reload
it until it is no longer pending.

When the profile is ready, click Download and download the provisioning profile to
your Mac. You can install it in a number of ways, but the easiest way is to drag
the .mobileprovision file you downloaded onto the Xcode icon in the dock. This will
install it in Xcode and make it available for development.

Making Your Device Available for Development
The final step before you can start coding is to make your device available for devel-
opment. Return to Xcode and click Window→Organizer from the menu. Select your
development device from the lefthand pane and click Use for Development. If Xcode
doesn’t manage to correctly register your device, you may have to disconnect and re-
connect your iPhone or iPod touch so that Xcode can find it correctly. If that fails to
work, you should try turning your device off and then on again. Depending on the
version of the SDK you installed and the version of the OS currently on your device,
you may have to restore your device from the Organizer window inside Xcode. In the
process, you’ll lose any data you have on it. If this is necessary, you can back up your
data by syncing with iTunes as normal before restoring the OS using Xcode. After the
restore, return to iTunes and restore your data.

If you can afford the extra cost, I recommend using a separate device for development
than you use as your day-to-day iPod or phone. In the future, you may wish to install
prerelease versions of the iPhone operating system onto your development device, and
by definition, these are always unstable. If you’re relying on your iPhone to keep you
in touch, you may not want to use it for development.

Once you’ve installed the profiles, you can verify that Xcode has correctly stored them
by opening the Library folder in your home directory and looking in MobileDevice/
Provisioning Profiles. The next time you sync your development device with iTunes
(and you should probably do that now), the mobile provisioning profile will be installed
onto it.

You can verify that the profile has been installed by going to Settings→General→Profile
on your iPhone and iPod touch and checking that the profile has been correctly installed
and verified, as shown in Figure 2-8.

You can now confirm that everything has worked correctly by noting the status light
next to your device in the Xcode Organizer window. If Xcode has managed to connect
to the device, and it is correctly enabled for development, the status light next to the
listing on the lefthand pane will be green. You’ll also see your mobile provisioning
profile listed in the center box in the main pane, as shown in Figure 2-9.

Preparing Your iPhone or iPod touch | 17

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-8. The development provisioning profile installed on my iPod touch

Figure 2-9. The Xcode Organizer window showing my iPod touch ready for development with my
development provisioning profile installed

Congratulations, you now have all the certificates and profiles in place to allow you to
start running code on your iPhone or iPod touch.

18 | Chapter 2: Becoming a Developer

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3

Your First iPhone App

In this chapter, you’ll build a small Hello World application and run it in iPhone Sim-
ulator. If you’re enrolled in the iPhone Developer Program, you’ll even get to run the
application on your iPhone or iPod touch. I’m going to take you through this step by
step, just to give you an idea of how Xcode and Interface Builder work together.

Enrolling in the iPhone Developer Program is separate from registering
as an iPhone developer. Enrollment ($99 or $299 per year, depending
on which program you join) provides you with the software certificates
and online provisioning tools needed to run your own apps on your own
iPhone and submit them for approval to the App Store.

However, even if you don’t plan to enroll in a Developer Program, you
will need to register so that you can download the iPhone SDK needed
to create apps. See Chapter 2 for more information on registering and
enrolling.

Objective-C Basics
I talk in detail about how Objective-C applications are normally structured in Chap-
ter 4. However, in this chapter, although I do get into Objective-C’s sometimes quirky
syntax, I’m going to give you a higher-level overview of the language to get you going
quickly.

Object-Oriented Programming
If you’ve heard someone explain object orientation before, the distinction between the
terms class and object may not be totally clear. However, there is a difference. A class
is the blueprint for objects; each time you create an object, the class definition deter-
mines its structure. An object is a collection of operations (methods) and information
(data) that occupies space in memory and can be instructed to perform operations
(invoke methods) on that information.

19

www.it-ebooks.info

http://www.it-ebooks.info/

For those of you who are new to programming, the following list defines some of the
terms you’ll come across frequently:

Objects and classes
A class consists primarily of two things: variables that can store data and methods
that can perform operations. The methods are used to retrieve, set, and manipulate
the variables. Objects—sometimes referred to as instances of a class—have specific
values associated with these variables. For example, you might use Apple’s UIView
Controller class to manage the view (i.e., UI) you present to the user of your ap-
plication. You also might create an instance of that class named myViewControl
ler to actually carry out the work of managing the view presented to the user. This
would then be referred to as the myViewController object. An instance of a class
should not be confused with its implementation, which is the realization of the class
in code.

Subclasses
Classes can also inherit functionality from an existing class (the parent or base
classes, commonly known as the superclass); classes that inherit functionality in
this way are referred to as subclasses. This means you can invoke a method of the
parent class on an object that is an instance of a subclass of the parent. Subclassing
is normally done so that you can extend the functionality of that class with addi-
tional methods or data. For example, when writing applications for the iPhone you
commonly define a subclass of the UIViewController class to manage your views,
instead of using the class directly. The subclass of the standard view controller
inherits all of the properties of its parent class, but in addition it allows you to
implement code to handle the specific view presented to the user, such as data
entry and validation.

Instance and class variables
Both instance and class variables are defined as part of the class declaration. How-
ever, every object (instance of the class) holds a separate copy of an instance vari-
able. In other words, if a class defines a variable foo, the value of foo can be different
for objects for the same class. Changing the value of an instance variable in one
object will not affect the value of the same variable in all the other objects of that
class. Conversely, only a single copy of a class variable exists. If you change the
value of a class variable from one object, the value of that variable will change for
all the objects of that class.

Accessor methods
Accessor methods, sometimes called getters and setters, are usually fairly simple
methods used to get and set instance variables in a class. They are used to provide
an abstraction layer between variables and the outside world so that the imple-
mentation of the class can change without having to change any code outside of
the class itself. In Objective-C, the compiler can generate these commonly used
functions for you.

20 | Chapter 3: Your First iPhone App

www.it-ebooks.info

http://www.it-ebooks.info/

Class methods
Class methods (also known as static methods) are similar in nature to class varia-
bles. These are methods that are associated directly with the class rather than the
object instance; they therefore will not have access to object instance variables.

Events and messages
An event is a message generated by the user interacting with your application’s
controls. For instance, if you tap the screen of your iPhone or iPod touch, this
generates a UI event in your application that is passed via a message from the
application to an object that has been delegated to deal with that specific type of
event.

Protocols
A protocol definition declares methods that any class can implement. If your class
declares that it abides by a particular protocol definition, you are announcing that
you have implemented the minimum mandatory methods declared in the protocol
definition, and may optionally have implemented some nonmandatory methods.

Delegate classes
A delegate class is a class that implements a protocol for handling events. Each
delegate protocol specifies a number of methods that must be implemented, and
additionally methods that may optionally be implemented. Declaring your class a
delegate implies that it (at least) implements the mandatory methods. For instance,
if your UI has a button, you can declare your class a delegate to handle events
generated by the button.

Event loop
The main event loop is the principal control loop for your application. This loop
is the process that receives and then passes external events, such as the user tapping
the iPhone’s screen or changes in the device’s orientation, to the appropriate del-
egate classes that you’ve included in your application.

Frameworks and libraries
A framework is a collection of related classes, protocols, and functions collected
together within a cohesive architecture. When you make use of a framework many
of the design decisions about how you as a developer will use the code it includes
have been taken out of your hands. However, by using the standard frameworks,
you inherit standard behavior. For example, when Apple introduced Copy & Paste
to the iPhone with the release of version 3.0 of the firmware, it was enabled by
default in most third-party applications because the developers made use of the
standard UIKit framework to build those applications.

The Objective-C Object Model
For those of you coming from an object-oriented background, there are a number of
differences between the Objective-C model of object orientation and the one imple-
mented by Simula-derived languages such as C++, Java, and C#.

Objective-C Basics | 21

www.it-ebooks.info

http://www.it-ebooks.info/

While its nonobject operations are identical to C, Objective-C derives its object syntax
almost directly from the Smalltalk language. Its object model is based on sending mes-
sages to object instances; in Objective-C you do not invoke a method, but instead send
a message. What’s the difference? Invoking a method implies that you know something
about that method. Sending a message leaves it up to the receiver of the message to
figure out what to do with it.

This kind of loosely coupled chain of command means that Objective-C is much more
dynamic at runtime than the Simula-derived languages, but it also means it might
appear to be insubordinate.

That’s because in Simula-derived languages, you must know the type of an object before
you can call a method on it. In Objective-C this is not the case. You simply send the
object a message. The receiving object then attempts to interpret the message, but there
is no guarantee of a response. If it doesn’t understand the message, it will ignore it and
return nil. Among other things, this kind of model does away with the need to con-
tinually cast objects between types to ensure that you are sending a message that will
be understood.

Casting is the process whereby you represent one variable as a variable
of another type. This is done both for primitive types (suppose you want
to change a float to an integer as part of an integer arithmetic operation),
as well as for objects. An object can be cast to another object type if it
is a subclass of that type. In Objective-C, objects can be represented by
the generic id type, and you can cast objects to this type without regard
for their parent class.

The other main difference is in the way memory is managed. While languages such as
Java use garbage collection to handle memory management, in Objective-C memory is
managed using reference counting (the alloc-retain-release cycle, as discussed in Chap-
ter 4).

Garbage Collection and Reference Counting
In the simplest case, memory management must provide a way to allocate a portion of
memory and then free that memory when it is no longer needed. Garbage collection is
a form of memory management that automatically attempts to free memory that is no
longer in use. While garbage collection frees the developer from having to worry about
manually managing memory, the point where memory is automatically freed can be
unpredictable, and the garbage collection routines consume additional computing
resources.

Reference counting is a form of garbage collection, which counts the number of refer-
ences to an object (or portion of memory) and frees the associated memory when the
number of references reaches zero. The main advantage of reference counting over
“classic” garbage collection is that memory is freed as soon as it is no longer in use.

22 | Chapter 3: Your First iPhone App

www.it-ebooks.info

http://www.it-ebooks.info/

Although most programmers wouldn’t necessarily class it as such, reference counting
is among the simplest garbage collection algorithms, as it frees the developer from
having to manually manage memory at a low level.

Finally, the applications are almost invariably based on the Model-View-Controller
(MVC) (design) pattern, which is pervasive in the Cocoa Touch and other frameworks
that you’ll use to build iPhone applications. Rather than encouraging you to create
subclasses, the MVC pattern makes use of delegate classes. A pattern is a reusable sol-
ution to a commonly occurring problem; in object-oriented programming, patterns
usually describe how the developer should model the application in terms of the classes
that are used, and how the developer should structure the interactions and relationships
between these classes.

For example, the root UIApplication class implements the behavior necessary for an
application, but instead of forcing you to subclass the UIApplication class for your own
application and add your own code to the subclass, it delivers notification messages of
events to an assigned delegate class that implements the UIApplicationDelegate pro-
tocol. The UIApplication class asks the delegate class to respond to events when they
occur.

The Basics of Objective-C Syntax
I’ll dive a bit deeper into Objective-C as we go through the book, but to make it through
this chapter all you really need to know is that while variable declarations look much
the same as variable declarations do in other languages, method calls are surrounded
by square brackets. So, for example, both of the following lines of code are method calls:

[anObject someMethod];
[anObject someMethod: anotherObject];

The someMethod message is sent to the anObject object.

The someMethod message is sent to the anObject object and passes anotherObject as
an argument.

Despite the sometimes quirky syntax (including the square brackets and colon shown
in the preceding code) that Objective-C has inherited from Smalltalk, the logic of what
is going on should be clear, and we’ll discuss the syntax in much greater detail in the
next chapter.

Creating a Project
Now let’s create our first application in Xcode. Launch Xcode by double-clicking its
icon (it’s located in the /Developer/Applications folder on your hard drive). Click “Cre-
ate a new Xcode project” in the Xcode welcome window, and then click Application
under the iPhone OS section on the left side of the screen. Next, click the View-based

Creating a Project | 23

www.it-ebooks.info

http://www.it-ebooks.info/

Application template and click Choose. When prompted, name your new project
HelloWorld. Make sure you don’t put a space between Hello and World, as this can
sometimes confuse Xcode.

If you don’t see a welcome window when you start up Xcode, you can
create a new project by choosing File→New Project.

Xcode will now open a project window. The left pane shows the classes and other files
associated with the project, organized into groups. If you double-click on each group
icon, the group will expand to show you the files it contains, as shown in Figure 3-1.
The application template you choose determines how the groups are arranged, but you
can move the files around and create your own groups if you prefer to organize things
differently. The two main groups you’ll be working with are Classes, which contain all
the classes that make up the application, and Resources, which contain other support-
ing files, including the .xib files that the Interface Builder application uses to describe
your application’s UI. By default, the project will open to the top level of the project
hierarchy, and the top-right pane will show a list of all the files associated with the
project. The bottom-right pane (blank at first) will show you the source code of which-
ever file you have clicked on.

Figure 3-1. The initial project window opened by Xcode

24 | Chapter 3: Your First iPhone App

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the Project in Xcode
When you created the project, Xcode generated a number of files and, along with them,
a lot of the boilerplate code you’d otherwise have to laboriously type in. In fact, the
project that Xcode generates for you is a complete (if boring) iPhone application. You
know those flashlight applications that have proliferated on the App Store? You’ve just
written one....

If you click the Build and Run button in the Xcode toolbar (see Figure 3-1), Xcode will
compile the application, deploy it in iPhone Simulator, and then run it. After the ap-
plication opens, what you see in the simulator should look very similar to Figure 3-2,
a simple, blank, gray view.

Figure 3-2. Our Xcode template compiled and running inside iPhone Simulator

Let’s look at the files Xcode has generated as part of the template and how it has divided
them into separate groups in the Groups & Files pane of the interface:

Creating a Project | 25

www.it-ebooks.info

http://www.it-ebooks.info/

Classes
The Classes group contains the classes and header files we’re most interested in
and will be working with in this chapter. These are HelloWorldAppDelegate.h,
HelloWorldAppDelegate.m, HelloWorldViewController.h, and HelloWorldView-
Controller.m. These are the classes that do most of the heavy lifting in our appli-
cation, in particular managing the view (the UI) that the application’s user sees.

Other Sources
The Other Sources group contains just two files: the prefix header for the project,
HelloWorld_Prefix.pch, and main.m. The prefix header file is implicitly included
by each of your source files when they’re built; if you need to include a header file
in all of the classes in your project, you can add it here. However, it’s unlikely that
you’ll need to do this, so you can safely ignore it for the time being. The main.m
file contains the main() routine; this is the place where your program begins. In
this project, the main.m file handles some memory management duties (discussed
in Chapter 4) and then calls the UIApplicationMain function, which is the main
controller, responsible for handling the event loop. You’ll almost never have to
change anything in the Other Sources group, as the boilerplate code the template
generated should serve you fairly well.

Resources
The Resources group contains the .xib files Interface Builder uses to describe your
application’s UI.

The HelloWorld-Info.plist (property list) file also plays a role in defining the UI.
This property list is an XML file that describes basic information about your
application for Xcode and the compiler. You’ll look inside the HelloWorld-
Info.plist file later in the chapter when you deploy your application onto your
iPhone or iPod touch.

Frameworks
The Frameworks group contains a list of external frameworks that your application
links to. These frameworks provide the headers and libraries you need to write
software for the iPhone OS.

Products
The Products group contains the application binary that is generated when you
compile your application. At first the HelloWorld.app file is shown in red. Xcode
knows this file should exist, but since you haven’t yet compiled the application,
the file currently doesn’t exist.

If you open the Mac OS X Finder and navigate to where you saved the
project, you’ll be able to see how the project files are organized on disk.

26 | Chapter 3: Your First iPhone App

www.it-ebooks.info

http://www.it-ebooks.info/

Overview of an iPhone application

Figure 3-3 shows a high-level overview of an iPhone application life cycle. This illus-
trates the main elements of a typical iPhone application. Most iPhone applications make
use of the MVC pattern (see Chapter 4 for more details).

Figure 3-3. A block diagram of a typical iPhone application

When the user launches your application by tapping its icon on the home screen, the
application’s main() function is called. The main() routine calls the UIApplication
Main function, which is the main application controller responsible for handling the
event loop. From this point, the heavy lifting is done by the UIKit framework, which
loads the UI and starts the main event loop. During this loop, UIKit dispatches events,
such as notification of touches and orientation changes, to your objects and responds
to commands issued by your application. When the user performs an action that would
cause your application to quit, UIKit notifies your application and begins the termina-
tion process.

The application delegate is the core class in your application and receives messages
from the main event loop. It is responsible for handling critical system messages. For
example, the application delegate handles both the applicationDidFinishLaunching:
and the applicationWillTerminate: messages. Every iPhone application must contain
an application delegate object.

The view controller class is responsible for providing views, or a set of views, and pre-
senting them to the user. The class also acts as a delegate and manages your applica-
tion’s response to some of the standard system behaviors (e.g., a change in device
orientation), rearranging and resizing the views it manages in response to these system
events.

Creating a Project | 27

www.it-ebooks.info

http://www.it-ebooks.info/

Declarations, Interfaces, and Implementation
The declaration of a class announces its existence to the compiler, while the imple-
mentation of a class consists of the actual code that is the realization of the declaration.
Just like the UI the application presents to the world, the class declaration presents an
interface to the developer. The declaration declares an interface to your code, and the
implementation carries out the task the code has been written to perform.

It’s a common practice to separate the declaration of the class and the implementation
into separate header and implementation files. The reason this is done is because header
files can be, and usually are, included in multiple source files. Therefore, if we separate
the class declaration from its implementation, we make the resultant code more flexible
and increase reusability. We can change the underlying implementation of the class
without having to recompile the (possibly many) source files that make use of that class.

The application delegate

Let’s begin at the beginning, with the definition of the application delegate class. Click
on the HelloWorldAppDelegate.h file, which contains the declaration of the class:

#import <UIKit/UIKit.h>

@class HelloWorldViewController;

@interface HelloWorldAppDelegate : NSObject <UIApplicationDelegate> {
 UIWindow *window;
 HelloWorldViewController *viewController;
}

@property (nonatomic, retain) IBOutlet UIWindow *window;
@property (nonatomic, retain) IBOutlet
 HelloWorldViewController *viewController;

@end

Here we see the app delegate class declaration, beginning with the @interface directive
and ending with the @end directive. This is the delegate class that implements the
UIApplicationDelegate protocol and receives messages from the UIApplication class.
Breaking down this interface directive, we see that our class is called HelloWorldAppDe
legate, it’s a subclass of the main object superclass NSObject, and it implements the
UIApplicationDelegate protocol.

Let’s look at the corresponding implementation. Click on the HelloWorldAppDele-
gate.m file to open it in the Xcode editor:

#import "HelloWorldAppDelegate.h"
#import "HelloWorldViewController.h"

@implementation HelloWorldAppDelegate

28 | Chapter 3: Your First iPhone App

www.it-ebooks.info

http://www.it-ebooks.info/

@synthesize window;
@synthesize viewController;

- (void)applicationDidFinishLaunching:(UIApplication *)application {

 // Override point for customization after app launch
 [window addSubview:viewController.view];
 [window makeKeyAndVisible];
}

- (void)dealloc {
 [viewController release];
 [window release];
 [super dealloc];
}

@end

The header files are imported with the class declarations for both the HelloWorldApp
Delegate and the HelloWorldViewController classes.

This is the beginning of the declaration of the Hello World application delegate class.

Here, I add the view managed by the viewController object as a subview of the main
window.

This makes the window visible using the makeKeyAndVisible method.

This is the end of the declaration of the Hello World application delegate class.

Quick Access to Class and Method Documentation
In Xcode 3.2 (which comes with Mac OS X 10.6 Snow Leopard), if you Option-double-
click on a class or method name, information about that class or method will appear
in a small pop-up window. (On most Apple keyboards, the Option key is also labeled
as the Alt key, is positioned between the Control and Command keys, and may have
the ⌥ symbol on it.) Click the book icon in the top right of the pop up, and you’ll get
to see the full documentation. Click on the small .h icon to go to the header file where
that class or method is declared. The trick still works in previous versions of Xcode,
but instead of a little pop-up window appearing, you’re taken directly to the class
documentation.

Option-double-click on the UIApplicationDelegate in the app delegate header file, then
click on the book icon to go to the full documentation, and you’ll see the protocol
reference. This shows you the methods the app delegate must implement as well as the
optional methods (which are marked as such in the protocol documentation). These
represent the messages the UIApplication class sends to the application delegate.

Creating a Project | 29

www.it-ebooks.info

http://www.it-ebooks.info/

In the app delegate declaration file (which is also known as a header file), you’ll see
that we declare a UIWindow object as part of the class, and after telling the compiler that
HelloWorldViewController is a class using the @class directive, we also declare a Hello
WorldViewController object. The UIWindow class defines an object that coordinates the
views (the UI) that we see on the iPhone’s screen. Both of these objects are then declared
as class properties using the @property name directive.

Properties are a generic way of declaring the data a class provides. In the app delegate
implementation, we see that accessor methods for both of our properties are “synthe-
sized” using the @synthesize directive. The synthesis directive tells Objective-C to
automatically generate accessor methods for us, and vastly reduces the amount of code
we need to write ourselves.

If you return to the declaration (HelloWorldAppDelegate.h) shown earlier, you’ll see
that these properties were declared with the symbol IBOutlet. This symbol doesn’t
affect how our code is compiled, but it is a place marker to tell Xcode that this object
in our code can be connected to a UI component in Interface Builder. This allows the
UI constructed in Interface Builder to receive messages from our code. The corre-
sponding IBAction declaration on method declarations, which we’ll meet later, is yet
another place marker for Interface Builder, allowing us to connect calling actions in
response to events happening in the UI to a method. In many instances, a UI element
will also have an associated delegate protocol, and we can declare classes to act as
delegates to specific UI elements. Our class will then receive messages when the UI
element generates events. For instance, in Chapter 5 you’ll see the UITableView class
and associated delegate protocols in action.

Now let’s examine the applicationDidFinishLaunching method. This is where we can
insert our own code to customize the application after it launches. See Chapter 5 and
the City Guide application for an example of this sort of customization. At the moment,
it contains the following:

[window addSubview:viewController.view];
[window makeKeyAndVisible];

You make an object perform an operation by sending a message to the object. Messages
are enclosed in square brackets. Inside the brackets, the object receiving the message
is on the left side and the message (along with any parameters the message requires) is
on the right. The parameters follow the colon (see “The Basics of Objective-C Syn-
tax” on page 23 for another example).

The view controller

Next, let’s look inside the HelloWorldViewController class. The interface file for this
class is called HelloWorldViewController.h; the implementation file is called Hello-
WorldViewController.m.

Let’s start with the interface file. Click on the HelloWorldViewController.h file in the
Classes group to open the file in the Xcode editor.

30 | Chapter 3: Your First iPhone App

www.it-ebooks.info

http://www.it-ebooks.info/

Back in HelloWorldAppDelegate.h, the application delegate declared a viewControl
ler object of the class HelloWorldViewController, which right now doesn’t contain any
methods or properties of its own:

#import <UIKit/UIKit.h>

@interface HelloWorldViewController : UIViewController {

}

@end

However, looking at the header file you’ll see that our HelloWorldViewController class
is a subclass of the UIViewController class. This is the class that provides the funda-
mental view-management model for iPhone applications, and this class is associated
in Interface Builder with a NIB file (when you create a view-based project, Xcode au-
tomatically creates the associated NIB file). That NIB file contains the UI that will be
displayed when we make this view visible.

Although the Interface Builder files end with the .xib extension, Cocoa
programmers still refer to them by their old name, NIBs.

Next, click on the HelloWorldViewController.m file in the Classes group and look at
the implementation of the class. You’ll see here that the template has provided quite a
bit of commented out stub code (code that you need to fill for it to be functional). We’ll
return to this stub code later; for now, bear in mind that this subclass relies on its parent
class to handle the messages that are left undefined by virtue of being commented out:

#import "HelloWorldViewController.h"

@implementation HelloWorldViewController

/*
// The designated initializer. Override to perform setup that is required
// before the view is loaded.
- (id)initWithNibName:(NSString *)nibNameOrNil
 bundle:(NSBundle *)nibBundleOrNil {
 if (self = [super initWithNibName:nibNameOrNil bundle:nibBundleOrNil]) {
 // Custom initialization
 }
 return self;
}
*/

/*
// Implement loadView to create a view hierarchy programmatically,
// without using a nib.
- (void)loadView {
}

Creating a Project | 31

www.it-ebooks.info

http://www.it-ebooks.info/

*/

/*
// Implement viewDidLoad to do additional setup after loading the view,
// typically from a nib.
- (void)viewDidLoad {
 [super viewDidLoad];
}
*/

/*
// Override to allow orientations other than the default portrait orientation.
- (BOOL)shouldAutorotateToInterfaceOrientation:
 (UIInterfaceOrientation)interfaceOrientation {
 // Return YES for supported orientations
 return (interfaceOrientation == UIInterfaceOrientationPortrait);
}
*/

- (void)didReceiveMemoryWarning {
 // Releases the view if it doesn't have a superview.
 [super didReceiveMemoryWarning];

 // Release any cached data, images, etc that aren't in use.
}

- (void)viewDidUnload {
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
}

- (void)dealloc {
 [super dealloc];
}

@end

Our Project in Interface Builder
I’ve talked about Interface Builder quite a bit so far, but we haven’t looked at it. Let’s
do that now. Interface Builder allows you to create and lay out the UI for your iPhone
application visually; it stores your application’s interface in a bundle (an XML file that,
for historic reasons, is generally referred to as a NIB file) containing the interface
objects and their relationship with your own code. However, unlike almost all other
similar design systems that generate code, NIB files are serialized (also known as freeze-
dried) objects. In other words, the files contain the read-to-run object instances, rather
than code to generate these objects at compile time.

32 | Chapter 3: Your First iPhone App

www.it-ebooks.info

http://www.it-ebooks.info/

We can use Interface Builder to associate the laid out UI elements with our own code
by connecting outlets, actions, and delegates to the UI elements inside the Interface
Builder application. However, to do so we must first declare the objects and methods
in our code as either an IBOutlet or an IBAction where appropriate, and the classes as
delegates.

Open the Resources group and double-click on the HelloWorldViewController.xib file.
This will open Interface Builder and display the NIB file, as shown in Figure 3-4.

Figure 3-4. The basic HelloWorldViewController.xib in Interface Builder

You’ll see four windows: the main Interface Builder window showing the contents of
the NIB file; the View window which shows the contents of the NIB’s view; the Library
window; and the Attributes window (commonly known as the Inspector window). The
Library window contains all the UI elements you can use to build your UI, while the
Inspector window allows you to inspect the connections and other properties of a spe-
cific UI element.

We’ll discuss the details of what’s going on inside Interface Builder in later chapters;
for now, we’re just going to add a button and a label to our view. Then we’ll modify
our code so that it knows about those UI elements, and then go back into Interface
Builder to connect the UI elements to the objects in our code. At that point, we’ll have
a working Hello World application.

Click on the View window and make sure the leftmost tab (the Attributes tab) of the
Inspector window is selected. Let’s start by changing the rather dull gray background

Creating a Project | 33

www.it-ebooks.info

http://www.it-ebooks.info/

of the view to white. Click on the Background Color box to bring up the standard Mac
OS X color picker. Push the opacity slider to 100% and change the color to something
more interesting. In my case, I picked white, which is, I suppose, only marginally more
interesting than gray. Close the color picker; the background of your View window
should now be a more interesting color.

Now go to the Library and click and drag a label (UILabel) and a round rect button
(UIButton) onto your view and drop them in a sensible place. (Make sure
Library→Cocoa Touch→Inputs & Values is currently selected in the top pane first.)
Delete the placeholder text in the label by double-clicking on the label text to select it
and then pressing the Backspace key, and then type some appropriate replacement text
for the button—“Push me!” perhaps. Now save your NIB file and return to Xcode; as
you can in most Mac applications, you can save your changes by using the keyboard
shortcut ⌘-S.

Adding Code
At this point, we need to tell our code about the UI elements we added to our view so
that we can return to Interface Builder and make the connections between our new
label and button and our code. Open the HelloWorldViewController.h file and add a
UILabel and a UIButton declaration inside the HelloWorldViewController interface
directive:

#import <UIKit/UIKit.h>

@interface HelloWorldViewController : UIViewController {
 UILabel *label;
 UIButton *button;
}

@property (nonatomic, retain) IBOutlet UILabel *label;

-(IBAction)sayHello:(id) sender;

@end

We also need to declare our UILabel as a property and an IBOutlet. Finally, we need to
declare a sayHello method to be called when our button is clicked. We’ll use this to
change the text associated with our label and tell the world “Hello!” For now, just
duplicate the preceding code; we’ll discuss the layout of Objective-C methods in the
next chapter.

Debugging Using NSLog
If you have problems developing this application, or any of the other applications we
talk about in the rest of the book, you may want to make use of the NSLog function. You
can use this function to print debugging statements to the Console, which you can bring
up by clicking on Run→Console in the Xcode menu. Here’s how an NSLog is used in
your code:

34 | Chapter 3: Your First iPhone App

www.it-ebooks.info

http://www.it-ebooks.info/

NSLog(@"Prints this string to the console.");

The NSLog function understands the conventions used by the standard C library
printf function, including %f for floats and %d for integers, but in addition uses %@ for
objects:

NSLog(@"Prints the UILabel object %@ to the console.", label);

This works by asking the object to describe itself and produces sensible output for many
standard objects. This is done by calling the description: method in the object, which
returns a string describing the receiving class. The default implementation gives the
name of the class, although many objects override this implementation. For example,
with the NSArray object, it prints out a list of values.

Next, we need to open the HelloWorldViewController.m file. We need to synthesize
our label accessors, which will automatically generate accessor methods for us, and
write the implementation of the sayHello method. If you look at the documentation
for the UILabel class, you’ll see that all you need to do is to set the text property to
change the text displayed by the label:

#import "HelloWorldViewController.h"

@implementation HelloWorldViewController

@synthesize label;

-(IBAction) sayHello:(id) sender {
 label.text = @"Hello World";
}

- (void)didReceiveMemoryWarning {
 [super didReceiveMemoryWarning];
}

- (void)viewDidUnload {
}

- (void)dealloc {
 [label release];
 [button release];
 [super dealloc];
}

@end

Here @"Hello World" is a constant NSString object.

Creating a Project | 35

www.it-ebooks.info

http://www.it-ebooks.info/

Connecting the Outlets in Interface Builder
Save both the header and implementation files and return to the HelloWorldViewCon-
troller.xib file in Interface Builder. We’ve made all the code changes we need to make
inside Xcode. In Interface Builder, click on File’s Owner and select the Connections
tab (the second from the left, or press ⌘-2) in the Inspector window.

You’ll see that a label outlet and a sayHello: received action are listed. If you briefly
visit the Identity tab (the one farthest to the right), you’ll see that the Class Identity of
this NIB file is that of a HelloWorldViewController; this class owns the NIB.

By adding code to the HelloWorldViewController class and marking the label object as
an IBOutlet and our method as an IBAction, we’ve made these available inside Interface
Builder.

Return to the Connections Inspector (⌘-2) and click and drag from the small circle
next to your label outlet to the label in the View window. See Figure 3-5 for what this
should look like when you do that. Release the mouse button and you should see a new
outlet forming in the Connection window. The label outlet is now linked to the Label
(label) UI element.

Figure 3-5. Linking the Label outlet to the label UI element

Now click and drag from the sayHello: received action to your button, as shown in
Figure 3-6. When you release the mouse button you’ll be presented with a pop-up menu
showing you all of the different types of events that a UIButton can generate. For now,
we’re just interested in a simple button push, so select the Touch Up Inside event from
the pop-up menu. You should now see a connection formed between the sayHello:

36 | Chapter 3: Your First iPhone App

www.it-ebooks.info

http://www.it-ebooks.info/

received action and the Round Rect Button (Push me!) Touch down event. Whenever
this event occurs, our sayHello: method will be called.

Figure 3-6. Connecting the sayHello action to the button

We’re done, so save the NIB file and return to Xcode. Make sure Simulator – 3.0 |
Debug is selected in the Overview drop down, and click on the Build and Run button
in the menu bar. This will start iPhone Simulator and run our code. Click on the “Push
me!” button and our initially blank label should now read “Hello World” (see Fig-
ure 3-7).

Congratulations, you’ve written your first iPhone application. Now let’s get it to work
on your iPhone and iPod touch.

Putting the Application on Your iPhone
Open the HelloWorld-Info.plist file, as shown in Figure 3-8, and edit the “Bundle iden-
tifier” line to be the same as the wildcard Bundle Identifier you supplied to Apple in
Chapter 2. For instance, I entered uk.co.babilim as my Bundle Identifier, so I would
replace the string com.yourcompany with uk.co.babilim in the property list file.

Creating a Project | 37

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 3-7. iPhone Simulator running our Hello World application

Figure 3-8. The HelloWorld-Info.plist file; replace com.yourcompany with the Bundle Identifier you
gave to Apple in Chapter 2

38 | Chapter 3: Your First iPhone App

www.it-ebooks.info

http://www.it-ebooks.info/

Remember the following for future reference as you try to run the
examples in this book on your device:

If you ever see the error “Code Sign error: a valid provisioning profile
matching the application’s Identifier ‘com.yourcompany.Application-
Name’ could not be found,” return to this section and follow these
instructions to put your Bundle Identifier in the app’s Info.plist file.

Now double-click on the HelloWorld project icon at the top of the Groups & Files
pane of the Xcode interface; this will open the Project Info window. Click on the Build
tab and use the search box, or just scroll down the list of project properties and find
the Code Signing Identity associated with this project. Click on the drop-down menu
next to the “Any iPhone OS Device” entry and select iPhone Developer, as shown in
Figure 3-9.

Figure 3-9. Selecting the iPhone Developer identity in the Project Info window

Make sure you have completed all the steps needed to use your iPhone or iPod touch
for development that we talked about in the preceding chapter, and make sure your
device is plugged in and Xcode is aware of it by opening the Organizer window. You
should see a green light next to the name of your device in the lefthand pane.

Now change the Active SDK in the Overview drop down in Xcode’s toolbar from
“iPhone Simulator 3.0” to “iPhone Device X.Y (Base SDK)”, where X.Y is the version of
the most recent iPhone SDK you’ve installed (unless you have some need to compile
for an older SDK, you should always use the most recently supported SDK from Apple).
If everything seems OK at this point, click the Build and Run button on the toolbar.

Creating a Project | 39

www.it-ebooks.info

http://www.it-ebooks.info/

Xcode should compile the application and transfer it onto your device. You can monitor
this process using the Organizer window.

Congratulations, you’ve written and deployed your first iPhone application.

When you become more experienced at developing iPhone applica-
tions, and your applications become more complex, you might want to
think about using a wireframing application such as Briefs. This allows
you to experience how your concept feels without investing the expense
and time needed to fully develop the concept into a working application.
Since Briefs is image-based, it allows you to mock up your application
using anything from scanned paper sketches to full-blown image mock-
ups created by your graphic design team.

40 | Chapter 3: Your First iPhone App

www.it-ebooks.info

http://giveabrief.com/
http://www.it-ebooks.info/

CHAPTER 4

Coding in Objective-C

Thus far, you’ve built a simple iPhone application and discovered that it’s not that hard
to build apps for the iPhone or iPod touch. Let’s step back and take a broader look at
the Objective-C language.

Objective-C is an object-oriented language that adds Smalltalk-style messaging to C.
The language is a superset of the C language, providing constructs to allow you to define
classes and objects. Once you get the hang of the Smalltalk-style syntax, if you’ve pro-
grammed in an object-oriented language before, things should look fairly familiar.
However, there are some differences, and I discuss them in this chapter. One of the
bigger differences, especially for those who are coming from a Java background, is in
how Objective-C deals with memory management.

Declaring and Defining Classes
As is the case in almost all other object-oriented languages, in Objective-C classes pro-
vide the building blocks to allow encapsulation of data and methods that act on that
data. Objects are specific instances of a class, and they contain their own instance data
and pointers to the methods implemented by the class. Classes are specified in two
pieces: the interface and the implementation. The interface contains the declaration of
the class and is normally contained in a .h file. The implementation contains your actual
code (the definition) and is normally contained in a .m file. We briefly discussed this
in Chapter 3, but let’s take some time to look at it in more detail here.

Declaring a Class with the Interface
Let’s return to the declaration of the HelloWorldViewController class from Chapter 3,
which illustrates a typical class interface. The interface begins with the @interface
keyword, followed by the name of the class being declared and ending with a colon
followed by the name of the base (or parent) class:

@interface HelloWorldViewController : UIViewController

41

www.it-ebooks.info

http://www.it-ebooks.info/

An Objective-C class cannot inherit from multiple classes; however, the class it inherits
from may in turn inherit from another class. In the case of HelloWorldViewController,
its base class is UIViewController, which itself inherits from UIResponder, which inherits
from NSObject, the root class of most Objective-C class hierarchies.

Objective-C allows objects to descend from any root class. Although
NSObject is the most common root class, it is not the only one. For in-
stance, NSProxy is also a root class. So, you cannot always assume that
a given class is derived from NSObject.

After that first line, the instance variable declarations appear within curly braces. Fol-
lowing that, we have the declaration of properties and methods associated with the
class. The class declaration is wrapped up with the @end keyword:

#import <UIKit/UIKit.h>

@interface HelloWorldViewController : UIViewController {
 UIButton *button;
 UILabel *label;
}

@property (nonatomic, retain) IBOutlet UILabel *label;

-(IBAction)sayHello:(id) sender;

@end

The #import statement is not technically part of the class declaration. Instead, this
is a C preprocessor directive that avoids multiple inclusions of the same header file
and is effectively equivalent to the C preprocessor directive #include <UIKit/
UIKit.h>.

Defining a Class with the Implementation
The HelloWorldViewController implementation from Chapter 3 begins by importing
the class interface in the .h file. The implementation begins with the @implementation
declaration and ends with the @end declaration:

@implementation HelloWorldViewController

 ...

@end

After the implementation begins, we must synthesize the accessor for the properties we
declared in our interface file and implement the declared methods:

#import "HelloWorldViewController.h"

@implementation HelloWorldViewController

42 | Chapter 4: Coding in Objective-C

www.it-ebooks.info

http://www.it-ebooks.info/

@synthesize label;

-(IBAction) sayHello:(id) sender {
 label.text = @"Hello World";
}

- (void)didReceiveMemoryWarning {
 [super didReceiveMemoryWarning];
}

- (void)viewDidUnload {
}

- (void)dealloc {
 [label release];
 [button release]
 [super dealloc];
}

@end

Now that you’ve taken a quick look at the structure of an interface and implementation,
let’s take a detailed look at the individual parts.

Object Typing
When instance variables are themselves objects—for instance, when the HelloWorld
ViewController class declares UIButton and UILabel variables—you should always use
a pointer type. However, Objective-C adds an interesting twist: it supports both
strongly typed and weakly typed declarations. Here’s a strongly typed declaration:

UIButton *button;

Here we declare anObject. In the first instance we use strong typing, declaring it as an
object of the class SomeClass.

Here’s a weakly typed version of the declaration, where it is declared as an object of
class id:

id button;

The id class is a generic C type that Objective-C uses to represent an arbitrary object;
it’s a general type representing any type of object regardless of class and can be used as
a placeholder for both a class and a reference to an object instance. All objects therefore
are of type id. This can prove very useful; you can imagine that if you wanted to build
a generic class implementing a linked list, the type of object held in each node would
be of type id, since you’d then be able to store any type of object.

Declaring and Defining Classes | 43

www.it-ebooks.info

http://www.it-ebooks.info/

Properties
The declaration of properties using the @property compiler directive is a convenience
to avoid the declaration and, usually, the implementation of accessor methods for
member variables. You can think of a property declaration as the equivalent of declaring
accessor methods. You can also dictate how the automatically generated accessor
methods behave by declaring custom attributes (see the sidebar “Declaring Custom
Attributes for Properties”). In the HelloWorldViewController class, we declare the prop-
erty to be (nonatomic, retain):

@property (nonatomic, retain) IBOutlet UILabel *label;

We can also declare both of our properties to be an IBOutlet. While not formally part
of the list of attributes for an @property declaration, IBOutlet denotes that this property
is an Interface Builder outlet. I talked about outlets briefly in Chapter 3 and will discuss
them in more detail later.

Declaring Custom Attributes for Properties
Accessor Methods

By default, the automatically generated accessor methods created when you @synthe
size a property are propertyName: and setPropertyName:. You can change this by using
the getter=getterName and setter=setterName custom attributes. Bear in mind that
changing the default names will invariably break the dot syntax syntactic sugar (see
“The Dot Syntax” on page 45) that Objective-C normally provides.

Writability

You can choose whether the property has an associated setter accessor method by
specifying the readonly custom attribute. If this is set, only a getter method is generated
when you @synthesize the property in your implementation.

Setter Semantics

The assign, retain, and copy custom attributes govern the setter accessor method and
are mutually exclusive. The assign attribute is the default and implies that the generated
setter uses simple assignment. The retain attribute specifies that a retain should be
invoked on the object when it is assigned, and the previous value should be sent a
release message. See “Memory Management” on page 47 for the implications of this
constraint. Finally, the copy attribute implies that a copy of the object should be used
when the object is assigned, rather than a straight assignment. This attribute is valid
only for objects that implement the NSCopying protocol.

Atomicity

The nonatomic custom attribute specifies that the accessor method is nonatomic. Prop-
erties are atomic by default so that the accessor methods are robust in multithreaded
environments. Note that while the accessor is robust, it is not necessarily thread-safe.
Specifying nonatomic implies that the accessor is conversely not robust in such envi-
ronments, and that the generated accessor method returns the object directly. However,

44 | Chapter 4: Coding in Objective-C

www.it-ebooks.info

http://www.it-ebooks.info/

it does result in considerably faster code and is generally recommended for iPhone
applications.

Synthesizing Properties
When you declare an @property in the class interface, you must also synthesize the
property (unless you wish to implement the getter and setter methods yourself) using
the @synthesize declaration, as we do for the label property in the HelloWorldViewCon
troller class:

@synthesize label;

This asks the compiler to generate the accessor methods according to the specification
in the property declaration, and much reduces the amount of boilerplate code that you
have to write yourself.

The Dot Syntax
When you declare a member variable as a property and synthesize the declared acces-
sors using the @synthesize declaration in the @implementation of the class, you can
(entirely optionally) make use of some syntactic sugar that Objective-C provides, called
the dot syntax, as an alternative to using the automatically generated accessor methods
directly. For instance, this lets us do the following:

label.text = @"Hello World";

instead of doing this (note that Objective-C capitalized the t in text when it generated
the accessor method):

[label setText:@"Hello World"];

The dot syntax is arguably somewhat neater and easier to read.

Declaring Methods
We declare one method in the HelloWorldViewController class, called sayHello:.

#import <UIKit/UIKit.h>

@interface HelloWorldViewController : UIViewController {
 UILabel *label;
 UIButton *button;
}

@property (nonatomic, retain) IBOutlet UILabel *label;

-(IBAction)sayHello:(id) sender;

@end

Declaring and Defining Classes | 45

www.it-ebooks.info

http://www.it-ebooks.info/

The minus sign in front of the method indicates the method type, in this case an instance
method. A plus sign would indicate a class method. For example:

+(void)aMethod:(id) anObject;

The sayHello: method takes an id object as an argument and is flagged as an
IBAction for Interface Builder. When compiled, IBAction is replaced with void and
IBOutlet is removed; these compiler directives are simply used to flag methods and
variables to Interface Builder. This method is passed a generic id object as an argument
since we intended it to be triggered by a UI event, and we want to leave it open as to
what sort of UI element will be used. Under our UI, it’s triggered when the user clicks
the “Push me!” button in the UI, and this id object will be the UIButton that the user
clicked to trigger the HelloWorld event application. We can recover the UIButton object
by casting the sender object to a UIButton:

UIButton * theButton = (UIButton *)sender;

It’s a standard practice in Objective-C to call such objects sender. If we were unsure of
the underlying type of an id object, we could check the type using the isKindOfClass
method:

if([thisObject isKindOfClass:[anotherObject class]]) { ... }

Calling Methods
If you want to call a method exposed by an object, you do so by sending that object a
message. The message consists of the method signature, along with the parameter in-
formation. Messages are enclosed in square brackets; the object receiving the message
is on the left and the parameters are on the right, with the parameter following a colon.
If the method accepts more than one argument, this is explicitly named, and the second
parameter follows a second colon. This allows multiple methods with the same name
and argument types to be defined.

[anObject someMethod];
[anObject someMethod: anotherObject];
[anObject someMethod: anotherObject withAnotherArgument: yetAnotherObject];

The name of the method is the concatenation of the method name and any additional
named arguments. Hence in the preceding code we have someMethod: and someMe
thod:withAnotherArgument:. This may seem odd to people coming in from other lan-
guages, which usually have much terser naming conventions, but in general Objective-
C method names are substantially more self-documenting than in other languages.
Method names contain prepositions and are made to read like sentences. The language
also has a fairly entrenched naming convention, which means that method names are
fairly regular.

46 | Chapter 4: Coding in Objective-C

www.it-ebooks.info

http://www.it-ebooks.info/

While Objective-C method names are long, Xcode will perform code
completion as you type. Press Return to accept its suggestion, or F5 to
present a pop-up list of matching methods. Pressing Ctrl-/ will step you
through the parameters of the method.

Methods can return output, as shown here:

output = [anObject someMethodWithOutput: anotherObject];

And they can be nested, as in the following:

output = [anObject someMethodWithOutput: [anotherObject someOtherMethod]];

When I originally started writing in Objective-C, one of the main problems I had with
the language was the way it dealt with method calls. For those of us who are coming
from more utilitarian languages, the behavior of Objective-C in this regard does seem
rather strange. Although Objective-C code can be valid and not follow the rules I’ve
described here, modern Objective-C is not really separable from the Cocoa framework,
and Cocoa rules and conventions have become Objective-C’s rules and conventions.

Calling Methods on nil
In Objective-C, the nil object is functionally equivalent to the NULL pointer found in
many other C-derived languages. However, unlike most of these languages, it is per-
missible to call methods on nil without causing your application to crash. If you call
a method on (although in Objective-C we are actually passing a message to) the nil
object type, you will get nil returned.

Memory Management
The way memory is managed in Objective-C on the iPhone is probably not what you’re
used to if you’re coming in from a language such as Java. If you’re writing an application
in Objective-C for the Mac, you have the option of enabling garbage collection; how-
ever, on the iPhone you are restricted to using reference counting. This isn’t as bad as
it seems, and sticking to a few simple rules means that you can manage the memory
that is allocated.

Creating Objects
You can create an object in two ways. As shown in the following code, you can manually
allocate the memory for the object with alloc and initialize it using init or an appro-
priate initWith method (e.g., NSString has an initWithString method):

NSString *string = [[NSString alloc] init];
NSString *string = [[NSString alloc] initWithString:@"This is a string"];

Memory Management | 47

www.it-ebooks.info

http://www.it-ebooks.info/

Alternatively, you can use a convenience constructor method. For instance, the
NSString class has a stringWithString class method that returns an NSString object:

NSString *string = [NSString stringWithString:@"This is a string"];

In the preceding two cases, you are responsible for releasing the memory you allocated
with alloc. If you create an object with alloc, you need to release it later. However,
in the second case, the object will be autoreleased. You should never manually release
an autoreleased object, as this will cause your application to crash. An autoreleased
object will, in most cases, be released at the end of the current function unless it has
been explicitly retained.

The Autorelease Pool
The autorelease pool is a convenience that defers sending an explicit release message
to an object until “later,” with the responsibility of freeing the memory allocated to
objects added to an autorelease pool devolved onto the Cocoa framework. All iPhone
applications require a default autorelease pool, and the Xcode template inside the
main.m file creates it for us:

int main(int argc, char *argv[]) {

 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
 int retVal = UIApplicationMain(argc, argv, nil, nil);
 [pool release];
 return retVal;
}

The default autorelease pool is set up prior to entering the main event loop.

The default autorelease pool is drained after exiting the loop.

An additional inner autorelease pool is created at the beginning of each event cycle (i.e.,
iteration through your application’s event loop), and is released at the end.

The need for and existence of autorelease makes more sense once you appreciate why
it was invented, which is to transfer control of the object life cycle from one owning
object to another without immediately deallocating the object.

The alloc, retain, copy, and release Cycle
Although the autorelease pool is handy, you should be careful when using it because
you unnecessarily extend the time over which the object is instantiated, thereby grow-
ing your application’s memory footprint. Sometimes it makes a lot of sense to use
autoreleased objects. However, beginning Cocoa programmers often overuse conven-
ience constructors and autoreleased objects.

48 | Chapter 4: Coding in Objective-C

www.it-ebooks.info

http://www.it-ebooks.info/

Apple, writing in its Cocoa Fundamentals guide, officially discourages
the use of autorelease objects on the iPhone due to the memory-
constrained environment on the device, stating that “Because on iPhone
OS an application executes in a more memory-constrained environ-
ment, the use of autorelease pools is discouraged in methods or blocks
of code (for example, loops) where an application creates many objects.
Instead, you should explicitly release objects whenever possible.”

When handling memory management manually using the retain count and the alloc,
retain, and release cycle (see Figure 4-1), you should not release objects you do not
own. You should always make sure your calls to retain are balanced by your calls to
release. You own objects that you have explicitly created using alloc or copy, or that
you have added to the retain count of the object using retain. However, you do not
own objects you have created using convenience constructors such as stringWith
String.

Figure 4-1. The alloc-retain-release cycle; an object is allocated, retained, and then released twice,
bringing the reference count back to zero and freeing the memory

When releasing the object, you have the option of sending it either a release message
or an autorelease message:

[anObject release];
[anObject autorelease];

Sending a release message will immediately free the memory the object uses if that
release takes the object’s retain count to zero, while sending an autorelease message
adds the object to the local autorelease pool. The object will be released when the pool
is destroyed, normally at the end of the current function.

If your object is a delegate of another object, you need to set the delegate property of
that object to nil before you release your original object.

Memory Management | 49

www.it-ebooks.info

http://www.it-ebooks.info/

The dealloc Method
The dealloc method is called when an object is released. You should never call this
method directly, but instead send a release message to the object, because the object
may contain references to other objects that will not be deallocated.

As we did in the HelloWorldViewController class, you should always override the
dealloc method in your own objects and in release objects you have created or
retained:

- (void)dealloc {
 [label release];
 [button release]
 [super dealloc];
}

In this method, we released the label and button instance variables. We then called the
dealloc method of the superclass. It is entirely permissible to send a release message
to a nil object.

Responding to Memory Warnings
Your code must respond to memory warnings. Let’s look at the HelloWorldViewCon
troller implementation from Chapter 3 again. It implements the didReceiveMemory
Warning method:

- (void)didReceiveMemoryWarning {
 [super didReceiveMemoryWarning];
}

This is where you should release any large blocks of memory—for instance, image or
web caches—that you are using. If you ignore a memory warning, your application
may crash. The iPhone does not have any sort of virtual memory or swap file; when the
device runs out of memory there really is no more memory to allocate. It’s possible,
and advisable, to test your application by simulating a memory warning in iPhone
Simulator, which you can do by selecting Hardware→Simulate Memory.

Fundamental iPhone Design Patterns
When you write code you’re probably already using patterns, although possibly you’re
doing so without realizing it. A design pattern is just a reusable solution, a template,
for how to approach commonly occurring problems. A pattern is not code, but instead
describes how you should model the application in terms of the classes that are used,
and how they should structure the interactions and relationships between these classes.

The Cocoa Touch framework underlying your iPhone applications is based on one of
the oldest design patterns, the Model-View-Controller (MVC) pattern, which dates
from the 1970s. The MVC pattern is used to separate the program logic from the UI,

50 | Chapter 4: Coding in Objective-C

www.it-ebooks.info

http://www.it-ebooks.info/

and is the generally accepted way to build iPhone applications. As it is used so
extensively inside Apple’s own frameworks, including the UIKit framework, it would
be quite hard to write an iPhone application without using this pattern in your imple-
mentation. While you could write an iPhone application without referencing the MVC
pattern, it is enormously difficult to fight the underlying frameworks; you should in-
stead work with them. Attempting to write iPhone applications while ignoring the
underlying MVC patterns is a pointless exercise in make-work.

The Model-View-Controller Pattern
The MVC pattern divides your application into three functional pieces:

Model
The model manages the application state (and associated data) and is usually per-
sistent. It is entirely decoupled from the UI or presentation of the application state
to the user.

View
The view is what the user sees, and it displays the model for the user. It allows the
user to manipulate it and respond and generate events. In iPhone applications, the
view is normally built inside Interface Builder rather than programmatically.

Controller
The controller coordinates updates of the view and the model when user interac-
tion with the view makes changes to the model, and vice versa. This is typically
where most of the application logic lives.

We implemented our Hello World application from Chapter 3 using this pattern. We
created the view using Interface Builder, and the HelloWorldViewController class man-
aged the view. The application was too simple to require an explicit class to manage
the application’s state; effectively, the model was embedded in the ViewController
class. If we were strictly adhering to the design pattern, we would have implemented a
further class that our sayHello: method would have queried to ask what text should
have been displayed.

The model class is usually a subclass of NSObject and has a set of instance variables and
associated accessor methods, along with custom methods to associate the internal data
model.

Views and View Controllers
I’ve talked about both views and view controllers quite a lot, and while so far we’ve
built our views in Interface Builder and then handled them using our own view con-
troller code, that isn’t the only way to build a view. You can create views programmat-
ically—in fact, in the early days of iPhone development you had to do things that way.

Fundamental iPhone Design Patterns | 51

www.it-ebooks.info

http://www.it-ebooks.info/

However, Interface Builder has made things a lot easier, and I recommend that in most
cases you build your views using it if you can. When you used Interface Builder to
construct your view you edited a NIB file, an XML serialization of the objects in the
view. Using Interface Builder to create these objects, and to define the relationship
between them and your own code, saves you from writing large amounts of boilerplate
code that you would otherwise need to manage the view.

If you want to create your view manually, you should override the loadView: method
of your view controller class, as this is the method the view controller calls when the
view property is requested but is currently set to nil. Don’t override this method if
you’ve created your view using the initWithNibName: method, or set the nibName or
nibBundle properties. If you’re creating your view manually and you do override this
method, however, you must assign the root view you create to the view property of your
view controller class:

-(void) viewDidLoad {
 UIView* view = [[UIView alloc] initWithFrame:CGRectMake(0,0,320,480)];
 .
 .
 .
 self.view = view;
 [view release];
}

Your implementation of this method should not call [super viewDidLoad], as the default
implementation of this method will create a plain UIView if no NIB information is
present and will make this the main view.

The Delegates and DataSource Pattern
I talked briefly about delegates in Chapter 3. An object that implements a delegate
protocol is one that acts on behalf of another object. To receive notification of an event
to which it must respond, the delegate class needs to implement the notification method
declared as the delegate protocol associated with that event. The protocol may, and
usually does, specify a number of methods that the delegate class must implement.

Data sources are similar to delegates, but instead of delegating control, if an object
implements a DataSource protocol it must implement one or more methods to supply
data to requesting objects. The delegating object, typically something such as a
UITableView, will ask the data source what data it should display; for instance, in the
case of a table view, what should be displayed in the next UITableViewCell when it
scrolls into the current view.

52 | Chapter 4: Coding in Objective-C

www.it-ebooks.info

http://www.it-ebooks.info/

Declaring that a class is a data source or a delegate flags the object for Interface Builder
so that you can connect the relevant UI elements to your code. (We’ll be talking about
UITableView in Chapter 5.) To declare that AnObject was both a table view data source
and a delegate, we would note this in the @interface declaration:

@interface AnObject: UIViewController <UITableViewDataSource,
 UITableViewDelegate> {
 ...
}

This would mean that the AnObject object, a UIViewController, is responsible for both
populating the table view with data and responding to events the table view generates.
Another way to say this is that this object implements both the UITableViewData
Source and the UITableViewDelegate protocols.

At this point, you would use Interface Builder, and we’ll be doing that in the next
chapter when we build a table-view-based application to connect the UITableView in
our view to the data source and delegate object in our code.

Conclusion
This has been a dense chapter and fairly heavy going. However, our discussion of the
MVC pattern should show you that this delegation of event handling and of populating
data into the UI from the view to a controller class makes sense inside the confines of
the pattern, and the availability of these features in Objective-C is one of the reasons
why the MVC pattern has been widely adopted.

In this chapter, I was able to give you only a brief overview of Objective-
C and the Cocoa Touch framework. Added levels of subtlety are in-
volved in many of the things I covered, but I didn’t have the space to
cover them here. My coverage of the basics should give you enough
information so that you can pick up the rest as we go along. However,
if you intend to develop for the iPhone on a serious level, you should
read up on the language in more detail. Apple provides some excellent
tutorial material on its Developer website, and that should certainly be
your first port of call. However, I also suggest several other books for
further reading in Chapter 14.

Conclusion | 53

www.it-ebooks.info

http://developer.apple.com/iphone/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5

Table-View-Based Applications

The UITableView and associated classes are perhaps the most commonly used classes
when building UIs for your iPhone or iPod touch applications. Due to the nature of the
applications, you can use these classes to solve a large cross section of problems, and
as a result they appear almost everywhere. In this chapter, we’re going to dive fairly
deeply into the table view classes, and by the end of it you’ll be able to produce
UITableView-based applications on your own. We’ll also discuss some features of Xcode
and Interface Builder as we go along.

We’re going to write a simple guidebook application. We’ll start by displaying a list of
cities in a table (using the UITableView class). Then we’ll add the ability to click on the
city name inside each table cell (each cell is a UITableViewCell object), which will take
you to a page describing the city. Later in the chapter I’ll show you how to add and
delete cities to and from the guidebook. By the end of the chapter, we will have a
working guidebook application. However, before we get to write some new code, we’re
going to do some helpful refactoring of the template code generated by Xcode.

Open Xcode and choose “Create a new Xcode project” in the startup window, and then
choose the View-based Application template from the New Project pop-up window,
the sample template we used for our Hello World application in Chapter 3. When
prompted, name your new project CityGuide.

Simplifying the Template Classes
One of the annoying things about the Xcode templates is the long class names Xcode
chooses for the default classes. While the default class names are OK for small pro-
grams, they can become somewhat unwieldy, and at times rather inappropriate, when
the amount of code you have increases. So, we’re going to modify the template Xcode
provides before we add our own code, using a process known as refactoring the code.

Why are we doing this refactoring? Well, later in the chapter we’re going to be using
more than one view controller inside the project. The original name of the default view
controller created by the Xcode template would be somewhat misleading. In addition

55

www.it-ebooks.info

http://www.it-ebooks.info/

to changing its name to something that reflects its purpose, we will shorten the
CityGuideAppDelegate name.

Open the CityGuideAppDelegate.h file, right-click on the CityGuideAppDelegate class
name in the interface declaration, and select Refactor, as shown in Figure 5-1. This will
bring up the Refactoring window. Let’s change the name of the main application del-
egate class from CityGuideAppDelegate to CityGuideDelegate.

Figure 5-1. Select the class name, right-click, and select Refactor to access Xcode’s intelligent
refactoring tool

Since Objective-C does not have namespaces, it’s a common practice to
prefix your class names with initials to avoid namespace collision, or the
situation where two classes have the same name but do different things.
For instance, the Apple classes have the prefix NS for historical reasons,
as Cocoa was based on the NeXTSTEP frameworks.

Entering the new class name and clicking Preview, as I’ve done in Figure 5-2, shows us
that three files will be affected by the change. Click Apply and Xcode will propagate

56 | Chapter 5: Table-View-Based Applications

www.it-ebooks.info

http://www.it-ebooks.info/

the changes throughout the project. Remember to save the affected files before you
refactor the next set of classes.

Figure 5-2. The Refactoring window

If you find that the File→Save menu is grayed out in Xcode, click on the
file you want to save and then click somewhere inside the file (it doesn’t
matter where). Then you’ll be able to save the file.

You should also change the name of the CityGuideViewController class. Open the
CityGuideViewController.h file and right-click on the CityGuideViewController class
name in the interface declaration, and again choose to refactor. Let’s change this class
from CityGuideViewController to RootController. Entering the new class name and
clicking Preview shows that this change is more extensive, with six files being affected
by the change. Click Apply, and the changes will again propagate throughout the
project.

Notice, however, that Xcode has not changed the CityGuideViewController.xib file to
be more appropriately named RootController.xib. We’ll have to make this change by
hand. Click once on this file in the Groups & Files pane, wait a second, and click it
again. You can then rename it to RootController.xib.

Unfortunately, since you had to make this change by hand, it hasn’t been propagated
throughout the project. You’ll have to make some more manual changes. Double-click
on the MainWindow.xib file to open it in Interface Builder. Click on the Root Controller
icon in the main NIB window and open the Attribute pane of the Inspector window.
As you can see in Figure 5-3, the NIB name associated with the root controller is still
set as CityGuideViewController. Set this to RootController. You can either type the
name of the controller into the window and Xcode will automatically perform name
completion as you type, or use the control on the righthand side of the text entry box
to get a drop-down panel where you’ll find the RootController class listed. Remember

Simplifying the Template Classes | 57

www.it-ebooks.info

http://www.it-ebooks.info/

to save the NIB file using ⌘-S, and then test your refactoring by clicking the Build and
Run (or depending on your Xcode setup, the Build and Debug) button in Xcode’s menu
bar. You should see a bland gray screen pop up to prove that all is well.

Figure 5-3. Changing the NIB name from CityGuideViewController to RootController

Creating a Table View
With refactoring out of the way, now it’s time to put the UI together.

Double-click the RootController.xib file in Xcode to open it in Interface Builder. Then
double-click on the View icon in the RootController.xib window to bring up the View
window, and drag a table view from the Library window into the view. You’ll find the
table view under Cocoa Touch→Data Views in the Library window.

Center the UITableView in the view, as shown in Figure 5-4. You must confirm that
you’ve dropped it as a subview of the main view by clicking the View Mode widget on
the menu bar of the RootController.xib window and choosing List View. It should look

58 | Chapter 5: Table-View-Based Applications

www.it-ebooks.info

http://www.it-ebooks.info/

as shown in Figure 5-4, with Table View appearing under View. Save the .xib file using
⌘-S.

Figure 5-4. Dragging a UITableView from the Library window into the UIView

Switch back to Xcode to add the outlets and delegates Interface Builder needs so that
you can connect the UITableView to your code. Open the RootController.h interface file
and add a UITableView variable to the @interface declaration, then declare this as a
property and an IBOutlet. You also need to declare that this class implements both the
UITableViewDataSource and the UITableViewDelegate protocols. This means that it both
provides the data to populate the table view and handles events generated by user
interaction with the table view.

Once you’ve done this, the RootController.h file will look like this:

#import <UIKit/UIKit.h>

@interface RootController: UIViewController
 <UITableViewDataSource, UITableViewDelegate>
{
 UITableView *tableView;
}

Creating a Table View | 59

www.it-ebooks.info

http://www.it-ebooks.info/

@property (nonatomic, retain) IBOutlet UITableView *tableView;

@end

If you Option-double-click UITableViewDataSource in the declaration and then click the
documentation icon in the upper-right corner of the window that appears (or
⌘-Option-double-click to go directly there), you’ll see that the protocol has a number
of optional methods, as well as two mandatory methods (you must implement the
methods that aren’t labeled as “optional”). Having declared that our view controller is
a UITableViewDataSource, our RootController implementation must implement these
two mandatory methods. These methods are tableView:cellForRowAtIndexPath: and
tableView:numberOfRowsInSection:. The first of these methods returns a UITableView
Cell object; the table view will ask the data source delegate for a cell each time a new
cell is displayed in the view. The second method returns an NSInteger determining how
many sections are in the table view. Table views can be divided into sections, and a title
added to the top of each section. For now, we’ll use just one section (the default).

Despite what the documentation for UITableViewDelegate seems to suggest, there aren’t
any mandatory methods. However, to obtain any sort of functionality from our table
view we will at least have to implement the tableView:didSelectRowAtIndexPath:
method.

Now we must add the implementation of those two mandatory data source methods
to the RootController class (RootController.m). Once we have the code up and running
we’ll look at the tableView:cellForRowAtIndexPath: method in detail. This method
returns a populated table view cell for each entry (index) in the table, and it’s called
each time the view controller wants to display a table view cell. For example, it’s called
as the table view is scrolled and a new cell appears in the view.

Here are the contents of RootController.m. I marked in bold the lines I added to the file
that the Xcode template generated:

#import "RootController.h"

@implementation RootController

@synthesize tableView;

#pragma mark Instance Methods

(void)didReceiveMemoryWarning {
 // Releases the view if it doesn't have a superview.
 [super didReceiveMemoryWarning];

 // Release any cached data, images, etc that aren't in use.
}

- (void)viewDidUnload {
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
}

60 | Chapter 5: Table-View-Based Applications

www.it-ebooks.info

http://www.it-ebooks.info/

- (void)dealloc {
 [tableView release];
 [super dealloc];
}

#pragma mark UITableViewDataSource Methods

- (UITableViewCell *)tableView:(UITableView *)tv
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 UITableViewCell *cell =
 [tv dequeueReusableCellWithIdentifier:@"cell"];
 if(nil == cell) {
 cell = [[[UITableViewCell alloc]
 initWithFrame:CGRectZero reuseIdentifier:@"cell"] autorelease];
 }
 return cell;
}

- (NSInteger)tableView:(UITableView *)tv
 numberOfRowsInSection:(NSInteger)section
{
 // Our table view will consist of only 3 cells
 return 3;
}

#pragma mark UITableViewDelegate Methods

@end

Organizing and Navigating Your Source Code
I introduced something new in the preceding code listing: the #pragma mark declaration.
If you examine the lower-righthand pane of the Xcode interface you’ll see that the title
bar contains a filename, and immediately to the right of this is the name of the method
inside which your cursor currently happens to be. If you click on this, you’ll see a drop-
down menu showing all the method names in the implementation (you can access this
menu easily using the Ctrl-2 keyboard shortcut). You’ll also see the text of the pragma
marks I added to the code. For large classes, this is a convenient way to separate the
methods involved in different jobs. In this case, I’ve added marks for the instance, data
source, and delegate methods. You can also add a horizontal bar to the method list by
adding the following:

#pragma mark -

Do not add a space after the -, as this will make Xcode think this is a text comment.

Creating a Table View | 61

www.it-ebooks.info

http://www.it-ebooks.info/

Connecting the Outlets
We now need to go back into Interface Builder and wire up the outlets to our code as
we did in “Connecting the Outlets in Interface Builder” on page 36 in Chapter 3. Open
the RootController.xib file, and when Interface Builder opens, set the RootControl-
ler.xib main window’s view mode to List, and then open the View list to reveal the table
view.

Next, click the Table View icon and set the Inspector window to display the Connec-
tions Inspector (⌘-2). This reveals the dataSource and delegate outlets. Connect both
of these to File’s Owner in the main window, which in this case is the RootController
class, as shown in Figure 5-5.

Figure 5-5. Connecting the dataSource and delegate outlets of the UITableView in Interface Builder
to the RootController class (File’s Owner)

Now click on the File’s Owner icon. In the outlets section of the Connections Inspector
(⌘-2) you’ll see the tableView object that we flagged as an IBOutlet in the RootCon-
troller.h file. Connect this with the UITableView as shown in Figure 5-6.

62 | Chapter 5: Table-View-Based Applications

www.it-ebooks.info

http://www.it-ebooks.info/

If you don’t see the tableView object, quit Interface Builder (save your
work so far), return to Xcode, and make sure you saved RootControl-
ler.h. Then open RootController.xib in Interface Builder again; it should
appear when you select the File’s Owner icon and go to the Connections
Inspector.

We’ve reached a natural point at which to take a break. Quit Interface Builder (be sure
to save any changes) and return to Xcode. The code should now run without crashing,
although it’s not going to do very much. So, click Build and Run (or Build and Debug)
to start the application in iPhone Simulator. Figure 5-7 shows what you should see.

OK, now we have the basic table view code working, so let’s go back to the RootCon
troller implementation (RootController.m) and look at that tableView:cellForRowA
tIndexPath: method where we were creating and then returning table view cells. For
performance reasons, the UITableView can reuse cells to enhance scroll performance by
minimizing the need to allocate memory during scrolling. However, to take advantage
of this ability we need to specify a reuse identifier string. The UITableView uses this to
look up existing cells with the same identifier using the dequeueReusableCellWithIden
tifier: method. If it can’t find an unused cell with the correct identifier, it will create
one, but if an unused cell is available (perhaps it’s scrolled out of the current view), it
will reuse it:

Figure 5-6. Connecting the tableView IBOutlet in the RootController to the UITableView subview

Creating a Table View | 63

www.it-ebooks.info

http://www.it-ebooks.info/

UITableViewCell *cell =
 [tv dequeueReusableCellWithIdentifier:@"cell"];
if(nil == cell) {
 cell = [[[UITableViewCell alloc]
 initWithFrame:CGRectZero reuseIdentifier:@"cell"] autorelease];
}
return cell;

Figure 5-7. The empty table view inside iPhone Simulator

So far our table view isn’t that interesting, so let’s push forward and add some content
and some event handling. To do this, add an implementation for the tableView:didSe
lectRowAtIndexPath: delegate method to RootController.m. As the name suggests, this
method is called when a user clicks on a table view cell. Because our cells are empty at
the moment, we’ll also add some text to a cell before returning it from this method.
Added lines of code are shown in bold:

#pragma mark UITableViewDataSource Methods

- (UITableViewCell *)tableView:(UITableView *)tv
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 UITableViewCell *cell =
 [tv dequeueReusableCellWithIdentifier:@"cell"];
 if(nil == cell) {

64 | Chapter 5: Table-View-Based Applications

www.it-ebooks.info

http://www.it-ebooks.info/

 cell = [[[UITableViewCell alloc]
 initWithFrame:CGRectZero reuseIdentifier:@"cell"] autorelease];
 }

 cell.textLabel.text = @"Testing";
 return cell;
}

- (NSInteger)tableView:(UITableView *)tv
 numberOfRowsInSection:(NSInteger)section
{
 // Our table view will consist of only 3 cells
 return 3;
}

#pragma mark UITableViewDelegate Methods

- (void)tableView:(UITableView *)tv
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath
{
 [tv deselectRowAtIndexPath:indexPath animated:YES];
}

This is where we added text to the cell we’re returning from the tableView:cellFor
RowAtIndexPath: method.

Here’s where we implemented the tableView:didSelectRowAtIndexPath: delegate
method.

Here we just told the table view to deselect the cell every time the user touches it
and selects it. Because the animated argument is set to YES, the cell fades out as it
deselects itself. Previously, if you touched the cell it would have stayed permanently
selected.

You can see the results of these additions in Figure 5-8.

Building a Model
At this point, you should have a working UITableView. So far, you’ve implemented both
the view and the controller parts of the MVC pattern. Now we’re going to return to
Xcode and implement the model. This needs to be separate from the view and the view
controller, since we want to decouple the way the data is stored from the way it is
displayed as much as possible. This will increase the reusability of both the classes that
handle the UI and the classes that store the data behind the scenes, allowing us to
change how parts of the application work while affecting as little code as possible.

Right-click on the Classes folder in the Groups & Files pane and select Add→New File.
When you see the New File window shown in Figure 5-9, make sure Cocoa Touch
Class is selected on the left side of the screen. Next, select “Objective-C class,” make
sure Subclass of NSObject is specified, and click on Next.

Building a Model | 65

www.it-ebooks.info

http://www.it-ebooks.info/

You will then be asked for the filename of the new class. Type in City.m and click on
Finish. Xcode will generate a pair of files, City.h and City.m, containing the template
interface and the implementation of the new class, and will put them in the Classes
folder. If you look at these files, you can see that since you specified that the class was
a subclass of the base NSObject class, Xcode really hasn’t created a lot of code. It didn’t
know what you wanted the object for, so you’re going to have to write some code.

Open the City.h file and add variables to hold the name of our city, a short descriptive
paragraph, and an image. Declare these variables as properties.

#import <Foundation/Foundation.h>

@interface City : NSObject {
 NSString *cityName;
 NSString *cityDescription;
 UIImage *cityPicture;
}

@property (nonatomic, retain) NSString *cityName;
@property (nonatomic, retain) NSString *cityDescription;
@property (nonatomic, retain) UIImage *cityPicture;

@end

Figure 5-8. The new code running inside iPhone Simulator

66 | Chapter 5: Table-View-Based Applications

www.it-ebooks.info

http://www.it-ebooks.info/

I’m declaring the name and description as an NSString, and I’m declaring the variable
used to hold the picture as a UIImage. UIImage is a fairly high-level class that can be
directly displayed in a UIImageView that we can create inside Interface Builder.

I could have decided to use an NSMutableString rather than an
NSString. An NSMutableString is a subclass of NSString that manages a
mutable string, which is a string whose contents can be edited. Con-
versely, an NSString object manages an immutable string, which, once
created, cannot be changed and can only be replaced. Using mutable
strings here might give us a bit more flexibility later on, and if you decide
you need it, you can always go back and change these definitions to
mutable strings later. Changing from using an NSString to an NSMutable
String is easy since mutable strings are a subclass and implement all of
the methods provided by the NSString class. Going in the opposite di-
rection is more difficult, unless you have not made use of the additional
functionality offered by the mutable string class.

Figure 5-9. The New File window, which allows you to select the template Xcode will use to generate
the new class interface and implementation file

Building a Model | 67

www.it-ebooks.info

http://www.it-ebooks.info/

Open the City.m file and add code to @synthesize the cityName, cityDescription, and
cityPicture accessor methods. After doing that, add a dealloc: method so that the
variables will be released when the class is destroyed. Here’s what your City.m file
should contain:

#import "City.h"

@implementation City

@synthesize cityName;
@synthesize cityDescription;
@synthesize cityPicture;

-(void) dealloc {
 [cityName release];
 [cityDescription release];
 [cityPicture release];
 [super dealloc];
}

@end

Because we made use of properties, our accessor methods will be generated for us
automatically. So, we’re done now. Admittedly, this is just a fairly small class to hold
some data, but it illustrates how useful properties will be for larger, more complex
classes.

Let’s go back to the CityGuideDelegate class and prepopulate it with a few cities. You
can put in longer descriptions if you want. If you’re just using it for personal testing,
you could use text and images from Wikipedia. Later in the book I’ll show you how to
retrieve data like this directly from the network, but for now we’ll hardcode (embed the
data directly into the code; you normally will store your data outside the app) a few
cities into the app delegate class and include the images inside the application itself
rather than retrieving them from the network. Here’s what the CityGuideDelegate.h file
should look like now (added lines are shown in bold):

#import <UIKit/UIKit.h>

@class RootController;

@interface CityGuideDelegate : NSObject <UIApplicationDelegate> {
 UIWindow *window;
 RootController *viewController;
 NSMutableArray *cities;
}

@property (nonatomic, retain) IBOutlet UIWindow *window;
@property (nonatomic, retain) IBOutlet RootController *viewController;
@property (nonatomic, retain) NSMutableArray *cities;

@end

68 | Chapter 5: Table-View-Based Applications

www.it-ebooks.info

http://www.it-ebooks.info/

You should #import the header files for any classes you’re using in the implementa-
tion. But if you need to reference a class in your header file, you should use the
@class forward declaration instead of importing the class header file. Apple says in
its documentation that the @class directive “minimizes the amount of code seen by
the compiler and linker, and is therefore the simplest way to give a forward decla-
ration of a class name. Being simple, it avoids potential problems that may come
with importing files that import still other files.”

In the application delegate interface file we declare our City class using the @class
declaration, create an NSMutableArray to hold our list of cities, and declare this mutable
array to be a property.

The changes to the application delegate implementation are slightly more extensive:

#import "CityGuideDelegate.h"
#import "RootController.h"
#import "City.h";

@implementation CityGuideDelegate

@synthesize window;
@synthesize viewController;
@synthesize cities;

- (void)applicationDidFinishLaunching:(UIApplication *)application {

 City *london = [[City alloc] init];
 london.cityName = @"London";
 london.cityDescription =
 @"The capital of the United Kingdom and England.";
 london.cityPicture = [UIImage imageNamed:@"London.jpg"];

 City *sanFrancisco = [[City alloc] init];
 sanFrancisco.cityName = @"San Francisco";
 sanFrancisco.cityDescription = @"The heart of the San Francisco Bay Area.";
 sanFrancisco.cityPicture = [UIImage imageNamed:@"SanFrancisco.jpg"];

 City *sydney = [[City alloc] init];
 sydney.cityName = @"Sydney";
 sydney.cityDescription = @"The largest city in Australia.";
 sydney.cityPicture = [UIImage imageNamed:@"Sydney.jpg"];

 City *madrid = [[City alloc] init];
 madrid.cityName = @"Madrid";
 madrid.cityDescription = @"The capital and largest city of Spain. ";
 madrid.cityPicture = [UIImage imageNamed:@"Madrid.jpg"];

 self.cities = [[NSMutableArray alloc]
 initWithObjects:london, sanFrancisco, sydney, madrid, nil];
 [london release];
 [sanFrancisco release];
 [sydney release];
 [madrid release];

Building a Model | 69

www.it-ebooks.info

http://www.it-ebooks.info/

 // Override point for customization after app launch
 [window addSubview:viewController.view];
 [window makeKeyAndVisible];
}

- (void)dealloc {
 [viewController release];
 [window release];
 [cities release];
 [super dealloc];
}

@end

First, we imported the City.h interface file.

Next, we synthesized the cities property to automatically create the accessor
methods.

Following this, we declared and populated four instances of the City class. For each
one, we allocated and initialized the instance object and then used the accessor
methods to populate the instance. We could also have written an initWithName:with
Description:andImage: method for the class and achieved the same result by using
this method to initialize the class. However, I do not discuss that sort of approach
to class initialization until later in the book; the first time you’ll meet this is when I
talk about web views near the start of Chapter 7.

Here, we initialized an NSMutableArray and populated it with the four cities. The
trailing nil in the object list passed to the initWithObjects: method is essential. You
must ensure that the last object in a comma-separated list of objects is the nil object;
otherwise, when iterating through the array your code will end up pointing to un-
allocated memory, which will lead to an exception.

Here, we released the initial reference to each of the four instances of the City class.
You’ll notice that previous to this we assigned references to these instances to the
self.cities array. Remembering our discussion of the alloc-retain-release cycle in
Chapter 4, we are therefore safe to reduce the count by releasing the initial reference,
which reduces the reference count from two back to one, as adding an object to an
array will increase its retain count. The memory allocated to these objects will there-
fore now be released when the self.cities array is released.

Here, we released the reference to the object instances that we are responsible for
before releasing the reference to the class itself. If we did not do this, memory allo-
cated for these objects would not be released until the application itself terminated.
When this happens, especially with many objects, the condition is referred to as a
memory leak.

70 | Chapter 5: Table-View-Based Applications

www.it-ebooks.info

http://www.it-ebooks.info/

If you create a UIImage using the imageNamed: method as shown in this
example, it is added to the default autorelease pool rather than the event
loop autorelease pool. This means the memory associated with such
images will be released only when the application terminates. If you use
this method with many large images, you’ll find that your application
may quickly run out of memory. Since these images are part of an au-
torelease pool, you’ll be unable to free the memory they use when the
device’s operating system calls the didReceiveMemoryWarning: method
in the application delegate when it runs short on memory. You should
use the imageNamed: method sparingly, and generally only for small
images.

Adding Images to Your Projects
As you can see, we retrieve the UIImage by name using the imageNamed: class method,
but from where are we retrieving these images? The answer is, from somewhere inside
the application itself. For testing purposes, I sorted through my image collection, found
a representative image for each city (and then scaled and cropped the images to be the
same size [1,000×750 pixels] and aspect ratio using my favorite image editing software),
and copied them into the Xcode project. To do this yourself, drag and drop each image
into the Resources folder in the Groups & Files pane. This brings up the copy file drop-
down pane, as shown in Figure 5-10. If you want to copy the file into the project’s
directory rather than create a link to wherever the file is stored, click on the relevant
checkbox. If you do not copy the files to the project’s directory, they will still be col-
lected in the application bundle file when Xcode compiles the application; however, if
you later move or delete the file, Xcode will lose the reference to it and will no longer
be able to access it. This is especially important when copying source code files. In
general, I advocate always checking the box and copying the file into your project,
unless you have a very good reason not to do so.

There are other ways to add a file to a project. You can also right-click
on the Resources folder and select Add→Existing Files to add a file to
the project.

After you copy the downloaded images into the project, they become accessible from
your code (see Figure 5-11). It’s generally advisable not to copy large images into the
project. For example, if your binary gets too large you’ll have distribution problems.
Among other problems, applications above a certain size cannot be downloaded di-
rectly from the App Store on the iPhone unless it is connected to the Internet via WiFi.
Depending on the demographic you’re targeting, this may limit the market for your
application. However, despite this, bundling images into your application is a good
way to get easy access to small icons and logos that you may want to use in your project.

Building a Model | 71

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 5-10. The drop down brought up when you drag and drop a file into the project

Figure 5-11. The downloaded images inside my Xcode project

72 | Chapter 5: Table-View-Based Applications

www.it-ebooks.info

http://www.it-ebooks.info/

Connecting the Controller to the Model
Now that we’ve built the model, we have to go back to the RootController class and
build the bridge between the view controller and the model. To do this we need to make
only one change in the RootController interface declaration (RootController.h). Add a
pointer to an NSMutableArray that you’ll then populate inside the viewDidLoad: method:

@interface RootController : UIViewController
 <UITableViewDataSource, UITableViewDelegate> {
 UITableView *tableView;
 NSMutableArray *cities;
}

Changes to the implementation (RootController.m) are only slightly more extensive.
You need to #import both the City.h and CityGuideDelegate.h interface files, as you’ll
be using both of these classes inside the updated implementation:

#import "RootController.h"
#import "CityGuideDelegate.h"
#import "City.h"

As I mentioned earlier, you must implement the viewDidLoad: method. This UIViewCon
troller method is called after the controller’s view is loaded into memory, and is the
method we’ll normally use to set up things that the view needs. You’ll find that the
Xcode template included a stub for viewDidLoad (not far from the #pragma mark-labeled
instance methods), but it’s commented out (wrapped inside a comment, so it doesn’t
compile). Replace it with the following (be sure to remove the /* and */ so that it’s no
longer commented out):

- (void)viewDidLoad {
 CityGuideDelegate *delegate =
 (CityGuideDelegate *)[[UIApplication sharedApplication] delegate];
 cities = delegate.cities;
}

Here, we acquired a reference to the application delegate by using the [[UIApplication
sharedApplication] delegate] method call. Since this method returns a generic id ob-
ject, we had to cast it to be a CityGuideDelegate object before assigning it. We then
grabbed a pointer to the array of cities managed by the app delegate.

Since our code now declares a new variable, we also have to remember to release it in
the dealloc: method:

- (void)dealloc {
 [tableView release];
 [cities release];
 [super dealloc];
}

Finally, we must use the model to populate the table view. The number of rows in the
table view should now be determined by the number of cities in the NSMutableArray
instead of simply returning “3” all the time. We must now go ahead and change the

Connecting the Controller to the Model | 73

www.it-ebooks.info

http://www.it-ebooks.info/

tableView: numberOfRowsInSection: method to reflect that by replacing the line return
3; (and the comment above it). Here’s how the method should look now:

- (NSInteger)tableView:(UITableView *)tv
 numberOfRowsInSection:(NSInteger)section
{
 return [cities count];
}

Finally, we need to change the tableView:cellForRowAtIndexPath: method to label the
cell with the correct city name. To do this, add the following code shown in bold, which
figures out which row of the table we’re trying to populate and looks up the appropriate
element of the cities array:

- (UITableViewCell *)tableView:(UITableView *)tv
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 UITableViewCell *cell =
 [tv dequeueReusableCellWithIdentifier:@"cell"];
 if(nil == cell) {
 cell = [[[UITableViewCell alloc]
 initWithFrame:CGRectZero reuseIdentifier:@"cell"] autorelease];
 }

 City *thisCity = [cities objectAtIndex:indexPath.row];
 cell.textLabel.text = thisCity.cityName;
 return cell;
}

We’ve now reached a point where we have a functional, buildable application. How-
ever, while our table view now reflects our model, we still can’t access any of the in-
formation we entered about our cities. When we click on a city we want the application
to tell us about the city, and for that we need to modify the tableView:didSelectRowA
tIndexPath: method. But for now, click the Build and Run button on the Xcode toolbar,
and your iPhone Simulator should pop up, looking like Figure 5-12.

Mocking Up Functionality with Alert Windows
Before I go on to show how to properly display the city descriptions and images using
the UINavigationController class, let’s do a quick hack and get the application to pop
up an alert window when we click on a table view cell. Go back to RootController.m
and add the highlighted lines in the following code to the didSelectRowAtIndexPath:
method:

- (void)tableView:(UITableView *)tv
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath {
 City *thisCity = [cities objectAtIndex:indexPath.row];
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:thisCity.cityName message:thisCity.cityDescription
 delegate:self cancelButtonTitle:nil otherButtonTitles:@"OK", nil];
 [alert show];
 [alert autorelease];

74 | Chapter 5: Table-View-Based Applications

www.it-ebooks.info

http://www.it-ebooks.info/

 [tv deselectRowAtIndexPath:indexPath animated:YES];
}

Figure 5-12. Populating the UITableView of our application using the new model

In this method, we create a UIAlertView window with an OK button, and set the title
to be the city name and the contents to be the city description. You can see how this
looks in Figure 5-13.

Adding Navigation Controls to the Application
Next, back out the changes you just made to the tableView:didSelectRowAtIndex
Path: method by deleting the lines you added in the preceding section (be careful to
not remove the call to deselectRowAtIndexPath).

Now, let’s wrap this app up properly. This means we have to add a UINavigationCon
troller to the application. If you’ve used many iPhone apps, you’ll be familiar with
this interface; it’s one of the most commonly used iPhone design interface patterns.
Clicking on a cell in the table view makes the current view slide to the left and a new
view is displayed. You return to the original table view by clicking on the Back button.

Adding Navigation Controls to the Application | 75

www.it-ebooks.info

http://www.it-ebooks.info/

The first thing you need to do is add an IBOutlet to a UINavigationController to the
app delegate interface (CityGuideDelegate.h):

#import <UIKit/UIKit.h>

@class RootController;

@interface CityGuideDelegate : NSObject <UIApplicationDelegate> {
 UIWindow *window;
 RootController *viewController;
 NSMutableArray *cities;
 UINavigationController *navController;
}

@property (nonatomic, retain) IBOutlet UIWindow *window;
@property (nonatomic, retain) IBOutlet RootController *viewController;
@property (nonatomic, retain) IBOutlet UINavigationController *navController;
@property (nonatomic, retain) NSMutableArray *cities;

@end

You also need to make some modifications to the app delegate implementation (City-
GuideDelegate.m). Add a new line of code near the top to @synthesize the new property:

Figure 5-13. After you modify the tableView:didSelectRowAtIndexPath: method, a UIAlertView pop
up appears when you click on a city name

76 | Chapter 5: Table-View-Based Applications

www.it-ebooks.info

http://www.it-ebooks.info/

@synthesize window;
@synthesize viewController;
@synthesize cities;
@synthesize navController;

Now you need to replace the section of the code that adds the RootController main
view as a subview of the main window. Delete the following line from the bottom of
the applicationDidFinishLaunching: method:

[window addSubview:viewController.view];

Next, replace it with the code shown in bold in the following code snippet. This new
code adds the RootController to the NavController’s stack of view controllers, making
its view the current view of the NavController. Then it sets the current NavController
view as the subview of the main window. The end of the applicationDidFinishLaunch
ing: method should look like this now:

 // Override point for customization after app launch
 navController.viewControllers = [NSArray arrayWithObject:viewController];
 [window addSubview:navController.view];
 [window makeKeyAndVisible];
}

As the current view of the NavController changes, it will automatically update the sub-
view of the main window, and thus what the user sees on his screen. Let’s get this
working first, and afterward I’ll discuss exactly how the NavController manipulates its
stack of views.

Open the MainWindow.xib file in Interface Builder and drag and drop a navigation
controller (UINavigationController) into the main NIB window (titled “MainWindow”
or “MainWindow.xib”). The navigation controller is found on the Library (⌘-Shift-L)
under Cocoa Touch→Controllers.

After doing so, you should see something similar to Figure 5-14. Note the navigation
bar that appears at the top (with the title “City Guide”).

After adding the UINavigationController to the NIB, click on the CityGuide App Del-
egate icon in the main NIB window and switch to the Connections pane (⌘-2) of the
Inspector window. Connect the navController outlet to the UINavigationController,
as shown in Figure 5-15.

After performing this step, save the NIB file and return to Xcode. Open the RootCon-
troller.m file and add the following snippet at the top of the viewDidLoad: method:

self.title = @"City Guide";

We’ve reached another good time to take a break, so click Build and Run. If you’ve
followed all the steps, you should see what I see, something that looks a lot like Fig-
ure 5-16.

Adding Navigation Controls to the Application | 77

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 5-14. Adding a UINavigationController to the MainWindow.xib NIB file

Figure 5-15. Connecting the UINavigationController to the outlet created in the application delegate
code earlier

78 | Chapter 5: Table-View-Based Applications

www.it-ebooks.info

http://www.it-ebooks.info/

Adding a City View
You might have a nice navigation bar, but it doesn’t do any navigation yet, and after
backing out of the changes you made to the tableView:didSelectRowAtIndexPath:
method to present a pop up, the code doesn’t tell you about the selected city anymore.
Let’s fix that now and implement a view controller and associated view to present the
city information to the application user.

Right-click on the Classes folder in the Groups & Files pane and select Add→New File.
Choose a UIViewController subclass and tick the checkbox to ask Xcode to generate
an associated NIB file, as shown in Figure 5-17. When prompted, name the new class
CityController.m, as this will be the view controller we’re going to use to present the
information about our cities.

This will generate three new files: CityController.h, CityController.m, and CityCon-
troller.xib. For neatness you might want to drag the CityController.xib file into the
Resources folder of the project along with the other project NIB files.

Figure 5-16. The CityGuide application is starting to look more like an iPhone application after adding
a navigation bar

Adding a City View | 79

www.it-ebooks.info

http://www.it-ebooks.info/

Right now, the new NIB file is just a blank view. We’ll fix that later, but first we need
to add code to the tableView:didSelectRowAtIndexPath: method in the RootControl-
ler.m class to open the new view when a city is selected in the table view:

- (void)tableView:(UITableView *)tv
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath
{

 CityGuideDelegate *delegate =
 (CityGuideDelegate *)[[UIApplication sharedApplication] delegate];
 CityController *city = [[CityController alloc] init];

 [delegate.navController pushViewController:city animated:YES];
 [city release];

 [tv deselectRowAtIndexPath:indexPath animated:YES];
}

Figure 5-17. Select a UIViewController subclass and tick the checkbox for Xcode to create an
associated XIB for the user interface

80 | Chapter 5: Table-View-Based Applications

www.it-ebooks.info

http://www.it-ebooks.info/

Here we grabbed a reference to the application delegate and initialized a new CityCon
troller instance. We then pushed this view controller onto the top of the UINaviga
tionController stack, making its view the current view.

Additionally, at the top of the RootController.m class, since we’re now making use of
the CityController class, we’ll also need to import its interface file into this class:

#import "CityController.h"

This is another good point to stop and try things out, so click the Build and Run button
in the Xcode menu bar. If all has gone well, when you click on a city your table view
should slide neatly to the left and reveal a blank white view created by the CityControl
ler view controller, with a navigation bar at the top and a Back button provided by
your UINavigationController that will take you back to the city table view, as shown
in Figure 5-18.

Figure 5-18. The blank view generated by the CityController view controller

From here we need to modify the CityController class so that we can populate its view
from the model held by the app delegate; then we need to build that view in Interface
Builder by modifying the CityController.xib file. The first question we need to ask,
however, is “How does the controller class know which city to display?” An easy way
to make this happen is to override the init method. In the interface file (CityControl-
ler.h), we’ll declare the following method:

Adding a City View | 81

www.it-ebooks.info

http://www.it-ebooks.info/

- (id)initWithIndexPath:(NSIndexPath *)indexPath;

I plan to initialize the class by passing in the index (NSIndexPath) of the selected
UITableViewCell in the main table view. From this you can figure out which City to use
to populate the view. As you can imagine, this is one of a number of different ways to
approach this problem.

In our view, we’ll be using the navigation bar to display the city name as the view title,
a UITextView element to display the city description, and finally a UIImageView to display
the picture of the city that we added to the project earlier. The interface file therefore
has to declare these as variables and make them available to Interface Builder by also
declaring them as an IBOutlet. Here’s what CityController.h should look like with these
changes (including the line of code just listed):

#import <UIKit/UIKit.h>

@interface CityController : UIViewController {
 NSIndexPath *index;

 IBOutlet UIImageView *pictureView;
 IBOutlet UITextView *descriptionView;
}

- (id)initWithIndexPath:(NSIndexPath *)indexPath;

@end

You’ll notice that we declared our variables as an IBOutlet inside the @interface dec-
laration instead of doing so while declaring them as a property. There really isn’t any
need to make these variables a property, as we don’t need accessor methods for them,
and making the IBOutlet declaration as part of the variable declaration is perfectly fine.

Even when working with properties, you can put the IBOutlet declara-
tion in the property’s variable declaration instead of the @property state-
ment if you wish (it’s a matter of style).

I implemented the init method in CityController.m as follows:

- (id)initWithIndexPath: (NSIndexPath *)indexPath {

 if (self == [super init]) {
 index = indexPath;
 }
 return self;
}

This invokes the superclass init method and assigns the result to the self variable. If
the call to the superclass is unsuccessful, self will be set to nil and this will be returned
by the initWithIndexPath: method. This is very unlikely to occur, and if it does your
application will crash. However, normally our line of custom initializer code will be

82 | Chapter 5: Table-View-Based Applications

www.it-ebooks.info

http://www.it-ebooks.info/

executed: it sets the index variable to point to the NSIndexPath we passed into the object.
We then initialize the view inside the viewDidLoad: method.

- (void)viewDidLoad {
 CityGuideDelegate *delegate = (CityGuideDelegate *)
 [[UIApplication sharedApplication] delegate];
 City *thisCity = [delegate.cities objectAtIndex:index.row];

 self.title = thisCity.cityName;
 descriptionView.text = thisCity.cityDescription;
 descriptionView.editable = NO;
 pictureView.image = thisCity.cityPicture;

}

Inside the viewDidLoad: method we grabbed a reference to the application’s app dele-
gate, and then used this and the index variable to retrieve the correct city. Then we set
the text and image properties of the two subviews to hold the city data, and the title
of the main view to be the city name. The title of the view will be displayed in the
navigation bar. We also set the editable property of the descriptionView to NO, as we
don’t want the user to be able to edit the text describing the city.

Since we’ve made use of both the CityGuideDelegate and the City classes in this method,
we must also remember to import them in our implementation. Add these lines to the
top of CityController.m:

#import "CityGuideDelegate.h"
#import "City.h"

Apart from the changes shown so far, the only other change to the default CityControl
ler implementation is to make sure we release our declared variables in the dealloc:
method. Find the dealloc: method at the bottom of CityController.m and add the lines
shown in bold:

- (void)dealloc {
 [index release];
 [descriptionView release];
 [pictureView release];
 [super dealloc];
}

Now we have to go back to the RootController implementation and make one quick
change: substitute the new initWithIndexPath: method for the default init method
call we originally used. In the tableView:didSelectRowAtIndexPath: method of Root-
Controller.m, replace the following line:

CityController *city = [[CityController alloc] init];

with this line, making use of the new initialization method:

CityController *city =
 [[CityController alloc] initWithIndexPath:indexPath];

Adding a City View | 83

www.it-ebooks.info

http://www.it-ebooks.info/

At this point, all we need to do is go into Interface Builder and build the view, and then
connect the view to the outlets we declared and implemented inside the CityControl
ler class.

Opening the CityController.xib file in Interface Builder will present you with a blank
view. Drag an image view (UIImageView) and text view (UITextView) element from the
Library window (⌘-Shift-L) onto the view. These controls are available under Cocoa
Touch→Data Views.

Since I resized my images to be the same aspect ratio, we’re going to change the size of
our UIImageView to reflect that. In the Size tab of the Inspector window (⌘-3), resize
the UIImageView to have a width of 250 pixels and a height of 188 pixels. Next, position
it at X = 25 and Y = 37. Turning to the Attributes tab of the Inspector window (⌘-1),
change the mode of the view to Aspect Fill. This means the image will be scaled to the
size of the view, and if the aspect ratio of the image is not the same as the aspect ratio
of the view, some portion of the image will be clipped so that the view is filled.

Turning to the UITextView element, use the Size tab of the Inspector window (⌘-3) to
position it at X = 0 and Y = 223 with a width of W = 320 and a height of H = 256. This
fills the main view below the image, as shown in Figure 5-19.

Figure 5-19. The CityController.xib with a UIImageView and UITextView added to the main view

84 | Chapter 5: Table-View-Based Applications

www.it-ebooks.info

http://www.it-ebooks.info/

The only thing left to do is connect the UIImageView and UITextView elements to the two
IBOutlet variables we created in code. In the main XIB window (titled CityControl-
ler.xib), click on File’s Owner and go to the Connections tab in the Inspector window
(⌘-2). Connect the descriptionView outlet to the text view and the pictureView outlet
to the image view, as shown in Figure 5-20.

Figure 5-20. Connecting the outlets to the UI views inside Interface Builder

At this point we’re done, so make sure the NIB file is saved and go back into Xcode
and click the Build and Run button on the toolbar. After the application starts tap one
of the city names and you should see something like Figure 5-21.

Edit Mode
So far, so good. But it would be nice if we could add more cities to our guide and, if
we’re not interested in a particular city, delete it as well. Let’s implement a first cut at
that using the UITableViewController edit mode. You’ll have seen this many times when
using iPhone applications such as the Mail application. There is an Edit button on the
top right on the navigation bar. When tapped, it will drop the table view into edit mode,
allowing you to delete mail messages. In some applications, the Edit button lets you
add entries to the table view.

Edit Mode | 85

www.it-ebooks.info

http://www.it-ebooks.info/

This is such a commonly implemented pattern that there are hooks inside the UIView
Controller to simplify things. In the viewDidLoad: method of RootController.m, you
need to add the following line of code:

self.navigationItem.rightBarButtonItem = self.editButtonItem;

This will add an Edit button to the navigation bar. Clicking on this button calls a
method called setEditing:animated: on the view controller, which sets the table view
into edit mode and changes the Edit button to a Done button. Clicking on the Done
button will take the table view out of edit mode, and calls the setEditing:animated:
method again, although this time to different effect (ending the edits and changing the
button back to an Edit button).

Since we want to be able to add new cities, when the table view is put into editing mode
we’re going to add another cell to our table view prompting us to “Add New City...”.
When this is clicked, we’ll open a new view allowing us to enter the details of the city.

To do that we need to change the tableView:numberOfRowsInSection: method in Root-
Controller.m to return cities.count+1 when our table view has been put into editing
mode. We’ll need to delete the one line (return cities.count;) in that method and
replace it with the code shown in bold:

Figure 5-21. The city guide to London

86 | Chapter 5: Table-View-Based Applications

www.it-ebooks.info

http://www.it-ebooks.info/

- (NSInteger)tableView:(UITableView *)tv
 numberOfRowsInSection:(NSInteger)section {
 NSInteger count = cities.count;
 if(self.editing) {
 count = count + 1;
 }
 return count;
}

We also need to edit the tableView:cellForRowAtIndexPath: method to return that extra
cell when in edit mode:

- (UITableViewCell *)tableView:(UITableView *)tv
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {

 UITableViewCell *cell =
 [tv dequeueReusableCellWithIdentifier:@"cell"];
 if(nil == cell) {
 cell = [[[UITableViewCell alloc]
 initWithFrame:CGRectZero reuseIdentifier:@"cell"] autorelease];
 }
 if (indexPath.row < cities.count) {
 City *thisCity = [cities objectAtIndex:indexPath.row];
 cell.textLabel.text = thisCity.cityName;
 } else {
 cell.textLabel.text = @"Add New City...";
 cell.textLabel.textColor = [UIColor lightGrayColor];
 cell.editingAccessoryType =
 UITableViewCellAccessoryDisclosureIndicator;
 }
 return cell;
}

Next, we need to override the setEditing:animated: method to put the table view into
edit mode and display the extra cell needed to prompt us to add a new city. Add this
method to RootController.m somewhere above the #pragma mark–labeled UITableView
DataSource methods:

-(void)setEditing:(BOOL)editing animated:(BOOL) animated {
 [super setEditing:editing animated:animated];
 [tableView setEditing:editing animated:animated];
 [tableView reloadData];
}

This code calls the super method and notifies the subview (the UITableView we are
attempting to put into edit mode) that we have been put into edit mode. It then reloads
the data in the table view to update the view the user sees.

By default, when you put the table view into edit mode, the edit control that appears
next to the table view cell is of style UITableViewCellEditingStyleDelete, a red circle
enclosing a minus sign, to signify that editing this row will delete the item in question.
This is fine for our existing cities, but for the newly added “Add New City...” cell we
need to set this to a different style. To do so, we need to implement the tableView:edi
tingStyleForRowAtIndexPath: method that is part of the UITableViewDelegate protocol.

Edit Mode | 87

www.it-ebooks.info

http://www.it-ebooks.info/

This should go somewhere below the #pragma mark–labeled UITableViewDelegate
methods:

- (UITableViewCellEditingStyle)tableView:(UITableView *)tv
 editingStyleForRowAtIndexPath:(NSIndexPath *)indexPath {
 if (indexPath.row < cities.count) {
 return UITableViewCellEditingStyleDelete;
 } else {
 return UITableViewCellEditingStyleInsert;
 }

}

In this method, we tell the table view that for cells occupied by existing cities we want
the delete style; otherwise, we want the insert style, a green circle enclosing a plus sign.

Bearing in mind that we haven’t actually implemented the backend logic for editing
yet, we’ve reached a good point to see if everything’s working. Click the Build and Run
button in the Xcode toolbar, and when the City Guide application starts tap on the
Edit button on the navigation bar. Your app should look just like Figure 5-22.

Figure 5-22. The City Guide table view in editing mode

You’ve probably noticed that putting the table view into editing mode wasn’t really
very pretty, as no animation was carried out while the table view reloaded the view. It’s

88 | Chapter 5: Table-View-Based Applications

www.it-ebooks.info

http://www.it-ebooks.info/

actually fairly simple to change this by making use of two methods: insertRowsAtIn
dexPaths:withRowAnimation: and deleteRowsAtIndexPaths:withRowAnimation:.

Going back to our overridden setEditing:animated: method, we need to modify it to
use these two methods as shown here:

-(void)setEditing:(BOOL)editing animated:(BOOL) animated {
 if(editing != self.editing) {
 [super setEditing:editing animated:animated];
 [tableView setEditing:editing animated:animated];

 NSArray *indexes =
 [NSArray arrayWithObject:
 [NSIndexPath indexPathForRow:cities.count inSection:0]];
 if (editing == YES) {
 [tableView insertRowsAtIndexPaths:indexes
 withRowAnimation:UITableViewRowAnimationLeft];
 } else {
 [tableView deleteRowsAtIndexPaths:indexes
 withRowAnimation:UITableViewRowAnimationLeft];
 }
 }
}

This code now checks to see whether we are changing editing modes; if we are, we call
the super method and then notify our subview as before. However, instead of just calling
[tableView reloadData] we now need to build an array containing the NSIndexPath of
each cell we wish to insert (or delete) with animation. In our case, the array will hold
only a single object since we intend to animate only a single cell; we then insert or delete
with animation depending on whether we are entering or leaving editing mode,
respectively.

After clicking Build and Run again, you should still see something that looks a lot like
Figure 5-22; however, this time the “Add New City...” cell, as well as the + and –
buttons, will be nicely animated and fly in and out. Note that you still won’t be able to
do anything with these buttons, but at least they make a nice entrance and exit.

Deleting a City Entry
To actually delete a table view cell, we need to add the table view data source method
tableView:commitEditingStyle:forRowAtIndexPath: to the code. Add this method to
RootController.m between the #pragma mark-labeled UITableViewDataSource methods
and the #pragma mark-labeled UITableViewDelegate methods:

- (void) tableView:(UITableView *)tv
 commitEditingStyle:(UITableViewCellEditingStyle) editing
 forRowAtIndexPath:(NSIndexPath *)indexPath {
 if(editing == UITableViewCellEditingStyleDelete) {
 [cities removeObjectAtIndex:indexPath.row];
 [tv deleteRowsAtIndexPaths:[NSArray arrayWithObject:indexPath]
 withRowAnimation:UITableViewRowAnimationLeft];

Edit Mode | 89

www.it-ebooks.info

http://www.it-ebooks.info/

 }
}

In this method, we check that the editing style is set to delete, and if that’s the case, we
remove the item from the cities array. We figure out which item to remove by checking
the indexPath.row, and delete the relevant table view cell with animation.

You can now delete cities from the City Guide application. Click Build and Run and
try it out. Tap the Edit button on the navigation bar, and then tap the edit control to
the left of a city name. Tap the Delete button that appears, as shown in Figure 5-23.
The city will be deleted. Tap the Done button.

Figure 5-23. Deleting a city

The nice part about implementing things in this way is that you don’t have to drop the
table into edit mode to delete a city; swiping from left to right will also bring up the
Delete button.

Adding a City Entry
Before you can add a new city, you must implement an interface to allow the user to
enter city metadata: the city name, a description, and an image. I’m going to put off
adding the ability to add a picture to the city entry until the next chapter, where we

90 | Chapter 5: Table-View-Based Applications

www.it-ebooks.info

http://www.it-ebooks.info/

look at various view controllers including the UIImagePickerController; for now, let’s
implement the basic framework to allow us to add a new city by allowing the user to
enter a city name and description.

Right-click on the Classes folder in the Groups & Files pane and select Add→New File.
Choose a UIViewController class and tick the checkbox to ask Xcode to generate an
associated XIB file, as shown in Figure 5-17. When prompted, name the new class
AddCityController.m. You may want to drag the .xib file from the Classes group into
the Resources group, just to keep things organized consistently.

As we did when we created the CityController class earlier, let’s add the hooks in the
code which will allow us to open the new view when we click on the “Add New City...”
cell after putting the table view into edit mode.

First we need to make some changes to the RootController class. Since we’re going to
be using the new AddCityController class, we need to import the declaration into the
implementation. Add this line to the top of RootController.m:

#import "AddCityController.h"

We also have to make some changes to the tableView:didSelectRowAtIndexPath:
method in that same file:

- (void)tableView:(UITableView *)tv
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath
{
 CityGuideDelegate *delegate =
 (CityGuideDelegate *)[[UIApplication sharedApplication] delegate];

 if (indexPath.row < cities.count && !self.editing) {

 CityController *city =
 [[CityController alloc] initWithIndexPath:indexPath];
 [delegate.navController pushViewController:city animated:YES];
 [city release];
 }

 if(indexPath.row == cities.count && self.editing) {

 AddCityController *addCity = [[AddCityController alloc] init];
 [delegate.navController pushViewController:addCity animated:YES];
 [addCity release];
 }

 [tv deselectRowAtIndexPath:indexPath animated:YES];
}

We execute the commands within this if statement for cells whose row is less than
the number of entries in the cities array, but only if the table view is not in editing
mode.

We execute the commands within this if statement for cells whose row is equal to
the number of entries in the cities array, but only if the table view is in editing mode.

Edit Mode | 91

www.it-ebooks.info

http://www.it-ebooks.info/

Because Objective-C is derived from C, its array indexes start at zero. So, the only cell
in our table view whose row number is greater than the number of entries in the city
array is the “Add New City...” cell. Therefore, the code in the first if block uses the
cities array to display each cell; the code in the second block uses a new city that the
user is adding.

The first code branch, for city cells, is unchanged from the original implementation.
While the second branch is very similar to the first, in this case we create an AddCity
Controller instance rather than a CityController instance.

Click the Build and Run button on the Xcode toolbar. Running the application at this
point shows us that we’ve forgotten something. Right now clicking on any of the table
view cells when the table is in edit mode, including the “Add New City...” cell, doesn’t
do anything, despite having implemented code inside the tableView:didSelectRowAtIn
dexPath: method.

You need to go back to the RootController.xib file inside Interface Builder, select the
UITableView element, and in the Attributes tab of the Inspector window (⌘-1) tick the
Allow Selection While Editing box.

If you rerun the application after setting this flag inside Interface Builder and click on
a city cell when the table view is in edit mode, you should see that it is briefly selected
and then deselected. Clicking on the “Add New City...” cell, however, should slide in
a blank view: the one associated with the AddCityController.xib file.

However, the brief selection effect you get when you click on one of the normal city
cells inside edit mode is annoying. These cells shouldn’t be selectable in edit mode, but
unfortunately there isn’t a way to tell our table view that only the last cell is selectable.
There are several ways to fool the user into thinking that this is the case, though. One
of these is to extend our setEditing:animated method in the RootController class to
set the selection style of these cells to UITableViewCellSelectionStyleNone when the
table view is in edit mode, and then set the style back to UITableViewCellSelectionSty
leBlue when we leave edit mode. The changes you need to make to the setEditing:ani
mated: method in the RootController.m file are significant, so you can simply replace
the method with the following:

-(void)setEditing:(BOOL)editing animated:(BOOL) animated {
 if(editing != self.editing) {
 [super setEditing:editing animated:animated];
 [tableView setEditing:editing animated:animated];

 NSMutableArray *indices = [[NSMutableArray alloc] init];
 [indices autorelease];
 for(int i=0; i < cities.count; i++) {
 [indices addObject:[NSIndexPath indexPathForRow:i inSection:0]];
 }
 NSArray *lastIndex = [NSArray
 arrayWithObject:[NSIndexPath
 indexPathForRow:cities.count inSection:0]];

92 | Chapter 5: Table-View-Based Applications

www.it-ebooks.info

http://www.it-ebooks.info/

 if (editing == YES) {
 for(int i=0; i < cities.count; i++) {
 UITableViewCell *cell =
 [tableView
 cellForRowAtIndexPath:[indices objectAtIndex:i]];
 [cell setSelectionStyle:UITableViewCellSelectionStyleNone];
 }
 [tableView insertRowsAtIndexPaths:lastIndex
 withRowAnimation:UITableViewRowAnimationLeft];
 } else {
 for(int i=0; i < cities.count; i++) {
 UITableViewCell *cell =
 [tableView
 cellForRowAtIndexPath:[indices objectAtIndex:i]];
 [cell setSelectionStyle:UITableViewCellSelectionStyleBlue];
 }
 [tableView deleteRowsAtIndexPaths:lastIndex
 withRowAnimation:UITableViewRowAnimationLeft];
 }
 }
}

Inside this loop, we build an NSMutableArray containing the NSIndexPath of all the
cells where we want to modify the selection style, that is, normal cells that contain
cities.

Here we build an NSArray containing the NSIndexPath of the final “Add New City...”
cell.

We have just entered edit mode, so inside this loop we retrieve the UITableView
Cell for each NSIndexPath in our array and set the selection style to “None”.

Leaving edit mode we do the opposite, and set the selection style back to the default
for each cell in the array.

Build and run the application and you’ll see that this gets you where you want to go:
inside edit mode the only (apparently) selectable cell is the “Add New City...” cell.
None of the other cells show any indication that they have been selected when they are
clicked on. However, outside edit mode these cells are selectable, and will take you (as
expected) to the view describing the city.

The “Add New City...” Interface
There are a number of ways we could build an interface to allow the user to enter
metadata about a new city. I’m going to take the opportunity to show you how to
customize a UITableViewCell inside Interface Builder and load those custom cells into
a table view.

Open the AddCityController.xib file in Interface Builder. Open the Library (⌘-Shift-L)
and choose Cocoa Touch→Data Views. Drag and drop a table view (UITableView) into
the view. Next, grab a UITableViewCell from the Library window and drag and drop

Edit Mode | 93

www.it-ebooks.info

http://www.it-ebooks.info/

that into the main AddCityController NIB window (not the View window). Repeat this
step and your AddCityController.xib window will look like Figure 5-24. Here you can
see the main view with its table view and the two table view cells, which are not part
of the main view. Double-clicking on a table view cell in this window will open the cell
in a new view window. Each table view cell is a separate subview.

Figure 5-24. The main AddCityController NIB window in list view mode

We now need to customize these two cells to give users the ability to enter text. To do
this, we’re going to build a table view similar to the one Apple uses when we write a
new mail message. Yes, in case you didn’t release it, that’s just a highly customized
table view. It’s actually pretty amazing how far you can get writing iPhone applications
just using the UITableView and associated classes.

Since you’re going to be using these cells to enter text, you don’t want them to be
selectable, so you should open the Attributes tab for both of the cells (click on the cell’s
name and press ⌘-1) and change the selection type from “Blue” to “None” in both cases.

At the top of the table view, we’ll have a normal-size table view cell with an embedded
UITextField to allow users to enter the city name. Below that we’ll have a super-size
table view cell with an embedded UITextView to allow users to enter the much longer
description.

Double-click on the first of your two table view cells, grab a label (UILabel) from the
Library window (Cocoa Touch→Inputs and Values), and drop it onto the Table View
Cell window. Make sure the label is selected, and in the Attributes tab (⌘-1) of the
Inspector window change the text to “City:”. Then switch to the Size tab (⌘-3) and
position the label at X = 10 and Y = 11 with width W = 42 and height H = 21.

Now grab a Text field (UITextField) from the Library window and drag and drop it
onto the same Table View Cell window. Click on the Text field, and in the Attributes
tab of the Inspector window select the dotted-line border for the field. This represents
the “no border” style. In the Text Input Traits section of the Attributes tab set Capitalize
to “None” and Correction to “No”. With the Text field still selected, go to the Size tab

94 | Chapter 5: Table-View-Based Applications

www.it-ebooks.info

http://www.it-ebooks.info/

of the Inspector window and resize the element to have origin X = 60 and Y = 0 with
width W = 260 and height H = 44. In the Attributes tab you may want to add some
placeholder text to the Text field to prompt the user to enter a city name. I went with
“e.g. Paris, Rome”.

Next, double-click on the second of the two table view cells. You need to resize this to
fill the remaining part of the main view. The navigation bar at the top of the view is 54
pixels high, and a standard table view cell is 44 pixels high. Since the iPhone’s screen
is 460 pixels high, to fill the view we want the table view cell to be 362 pixels high. So,
go to the Size tab in the Inspector window and set H = 362. The view window containing
the table view cell will automatically grow to reflect its new size.

Apple explicitly warns developers in the documentation that we should
not rely on the number of pixels in the iPhone screen staying constant.
The next revision of the iPhone after the 3GS may have a larger screen,
and our careful sizing of the table view cells based on the size of the
screen in the current models will break our application’s interface. In-
stead of hardwiring the sizes of the table view cells as we have done here,
in production code you should make use of the UIScreen class to deter-
mine the size of the main window. For more information, see Apple’s
SDK documentation for UIScreen.

Grab another UILabel from the Library window and drop it onto the Table View Cell
window. In the Attributes tab of the Inspector window change the text to “Description”
and then switch to the Size tab. Position the label at X = 11 and Y = 1 with width W =
86 and height H = 21.

Now grab a UITextView from the Library window (Cocoa Touch→Data Views), drag
and drop it into this new expanded table view cell, resize it to the remaining extent of
the cell using the Size tab in the Inspector window (X = 11, Y = 29, W = 297, H = 332),
and delete the default text from the Attributes tab. After doing so, you should have a
collection of views that resembles that seen in Figure 5-25.

Finally, click on the UITextView, and in the View section of the Attributes tab (⌘-1) of
the Inspector window set the Tag attribute to 777. Go to your other table view cell and
do the same for its UITextField. The Tag attribute is a UIView property that Interface
Builder is exposing to us; this is used to uniquely identify views (or in this case a sub-
view) to our application. We’ll be able to grab the UITextView and UITextField easily
using this tag directly from our code after setting it here in Interface Builder.

We’re done with Interface Builder for now, so save your changes to the NIB file, return
to Xcode, and open the AddCityController.h file. Add the code shown in bold:

#import <UIKit/UIKit.h>

@interface AddCityController : UIViewController
 <UITableViewDataSource, UITableViewDelegate> {
 IBOutlet UITableView *tableView;

Edit Mode | 95

www.it-ebooks.info

http://www.it-ebooks.info/

 IBOutlet UITableViewCell *nameCell;
 IBOutlet UITableViewCell *descriptionCell;
}

@end

Figure 5-25. Interface Builder with the two modified UITableViewCells

Here we declare the view controller class to be both a data source and a delegate for
the table view. We also declare three variables: a UITableView variable and two
UITableViewCell variables. We declare each of these variables to be an IBOutlet; we’ll
connect these variables to our views inside Interface Builder in a little while.

However, before we return to Interface Builder to do that, we need to implement a
number of table view data source and delegate methods inside the AddCityControl-
ler.m class implementation. Here is the full listing for that file:

96 | Chapter 5: Table-View-Based Applications

www.it-ebooks.info

http://www.it-ebooks.info/

#import "AddCityController.h"

@implementation AddCityController

#pragma mark ViewController Methods

- (void)didReceiveMemoryWarning {
 // Releases the view if it doesn't have a superview.
 [super didReceiveMemoryWarning];

 // Release any cached data, images, etc that aren't in use.
}

- (void)viewDidLoad {
 self.title = @"New City";
}

- (void)viewDidUnload {
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
}

- (void)dealloc {
 [tableView release];
 [nameCell release];
 [descriptionCell release];
 [super dealloc];
}

#pragma mark UITableViewDataSource Methods

- (UITableViewCell *)tableView:(UITableView *)tv
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 UITableViewCell *cell = nil;
 if(indexPath.row == 0) {
 cell = nameCell;
 } else {
 cell = descriptionCell;
 }
 return cell;

}

- (NSInteger)tableView:(UITableView *)tv
 numberOfRowsInSection:(NSInteger)section
{
 return 2;
}

#pragma mark UITableViewDelegate Methods

- (CGFloat)tableView:(UITableView *)tv
 heightForRowAtIndexPath:(NSIndexPath *)indexPath {

Edit Mode | 97

www.it-ebooks.info

http://www.it-ebooks.info/

 CGFloat height;
 if(indexPath.row == 0) {
 height = 44;
 } else {
 height = 362;
 }
 return height;

}

@end

As we did for the CityController view controller, we need to add a title to the view
inside the viewDidLoad: method. This title will be displayed in the navigation bar at
the top of the view.

Since we have declared variables, we need to remember to release them inside the
dealloc: method.

Instead of using the dequeueReusableCellWithIdentifier: method to obtain a cell,
we check which row we are being asked to display, and return either our custom cell
to enter the city name or the custom cell to enter the city description.

Since we have only two cells in our table view, we just return 2 from this method.

Since the table view cells are different heights, we have to return the correct height
in pixels depending on which cell we are being asked about.

The only method you haven’t seen before is the tableView:heightForRowAtIndexPath:
method. As you would expect, this delegate returns the height of the individual table
view cell in a specified location.

Double-click the AddCityController.xib file to open it in Interface Builder. Click on
File’s Owner and open the Connections tab (⌘-2) of the Inspector window. Connect
the descriptionCell outlet to the super-size table view cell and the nameCell outlet to
the smaller table view cell. If you aren’t sure which table view cell is which by looking
at the AddCityController.xib window, you can open each one and drag the outlet to
their open windows.

Finally, connect the tableView outlet to the table view in the main View window. Now
click on the table view in the main View window and connect both the dataSource and
the delegate outlets of the table view to File’s Owner. After doing this, click on File’s
Owner, and the Connections tab of the Inspector window should look the same as in
Figure 5-26.

We’ve reached a point where we should have a working application. Save the XIB, then
click on the Build and Run button in the Xcode toolbar to compile and start the
application in the simulator. Once it has started successfully, click on the Edit button
to put your table view into edit mode and then click on the “Add New City...” cell. If
everything has gone according to plan, you should see something like Figure 5-27.

98 | Chapter 5: Table-View-Based Applications

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 5-26. The Connections tab of the Inspector window after making all the necessary connections
inside Interface Builder between the various components

Figure 5-27. The new “New City” UI in iPhone Simulator

Edit Mode | 99

www.it-ebooks.info

http://www.it-ebooks.info/

If we tap inside one of the custom table view cells, the keyboard will appear and we
can start typing. However, right now we don’t have any way to save the information
we enter in these fields. Let’s implement that right now.

Capturing the City Data
Both the UITextField and the UITextView we’re using to capture the name and descrip-
tion of the city have delegate protocols. However, we don’t need to look into those
quite yet, although I will be talking about them later in the book. The first step is to
add a Save button to the interface.

That’s actually pretty easy to do from the viewDidLoad: method of the view controller.
We can use the same technique we used to add the Edit and Done buttons to the main
view controller to add our Save button to the AddCityController. However, instead of
declaring the navigation item to be self.editButtonItem, we make use of the UIBarBut
tonItem method’s initWithBarButtonSystemItem:target:action: to create the naviga-
tion item:

self.navigationItem.rightBarButtonItem = [[UIBarButtonItem alloc]
 initWithBarButtonSystemItem:UIBarButtonSystemItemSave
 target:self action:@selector(saveCity:)];

We must add the preceding code to the viewDidLoad: method of AddCityControl-
ler.m. In this method call, we declare that the button delegate is self (the AddCityCon
troller class) and that, when clicked, the event will be handled by the saveCity:
method in this class, which is shown next. We must add the following to AddCityCon-
troller.m. This should go directly below the #pragma mark–labeled instance methods:

- (void)saveCity:(id)sender {

 CityGuideDelegate *delegate =
 (CityGuideDelegate *)[[UIApplication sharedApplication] delegate];
 NSMutableArray *cities = delegate.cities;

 UITextField *nameEntry = (UITextField *)[nameCell viewWithTag:777];
 UITextView *descriptionEntry =
 (UITextView *)[descriptionCell viewWithTag:777];

 if (nameEntry.text.length > 0) {
 City *newCity = [[City alloc] init];
 newCity.cityName = nameEntry.text;
 newCity.cityDescription = descriptionEntry.text;
 newCity.cityPicture = nil;
 [cities addObject:newCity];

 RootController *viewController = delegate.viewController;
 [viewController.tableView reloadData];
 }
 [delegate.navController popViewControllerAnimated:YES];

}

100 | Chapter 5: Table-View-Based Applications

www.it-ebooks.info

http://www.it-ebooks.info/

This gets a pointer to the cities array (the data model) held by the application
delegate class.

Here the xxxTag property is used to obtain references to the UITextField and UIText
View in the two custom table view cells.

If the city name text field holds some text, we must assume there is a new city to add
to the guide. We need to create a new City object, populate it, and push it onto the
cities array.

Because we have changed the size of the cities array, we need to reload the data
held by the main view controller. The current view held by the object is not correct
anymore.

We are done with this view, so we ask the navigation controller to remove it from
its stack of views. This will mean that the current (displayed) view becomes the next
view down in the navigation controller’s stack of views. In this specific case, this will
be our previous view.

Since we’re making use of the CityGuideDelegate, RootController, and City classes in
this method we must also remember to import their definitions into our implementa-
tion. Add these lines to the top of AddCityController.m:

#import "CityGuideDelegate.h"
#import "RootController.h"
#import "City.h";

We could actually compile and run the application at this point and it would work,
mostly. But there are a few UI loose ends we need to clear up before everything works
correctly.

When we click the Save button and return to the main table view, we will be reusing
the table view cell which previously held the “Add New City...” cell to hold a city name
in the newly expanded list of cities. This will cause some problems: while we explicitly
set the color and accessory properties for this cell in cellForRowAtIndexPath: we don’t
do the same for the other cells. We therefore have to make a small change to the
tableView:cellForRowAtIndexPath: method and set the textLabel.textColor and
editingAccessoryType for the other cells as well as the “Add New City...” cell. Make
the changes shown here to the tableView:cellForRowAtIndexPath: method in Root-
Controller.m:

- (UITableViewCell *)tableView:(UITableView *)tv
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{

 UITableViewCell *cell =
 [tv dequeueReusableCellWithIdentifier:@"cell"];
 if(nil == cell) {
 cell = [[[UITableViewCell alloc]
 initWithFrame:CGRectZero reuseIdentifier:@"cell"] autorelease];
 }

Edit Mode | 101

www.it-ebooks.info

http://www.it-ebooks.info/

 NSLog(@"indexPath.row = %d, cities.count = %d",
 indexPath.row, cities.count);
 if (indexPath.row < cities.count) {
 City *thisCity = [cities objectAtIndex:indexPath.row];
 cell.textLabel.text = thisCity.cityName;
 cell.textLabel.textColor = [UIColor blackColor];
 cell.editingAccessoryType = UITableViewCellAccessoryNone;
 if (self.editing) {
 [cell setSelectionStyle:UITableViewCellSelectionStyleNone];
 }

 } else {
 cell.textLabel.text = @"Add New City...";
 cell.textLabel.textColor = [UIColor lightGrayColor];
 cell.editingAccessoryType =
 UITableViewCellAccessoryDisclosureIndicator;
 }
 return cell;
}

Since we are creating an extra cell while in edit mode, and as the table view has been
flagged as allowing selection in edit mode, the selection style for this cell will be the
default. The selection style will not be set implicitly since the setEditing:anima
ted: method has already been called on this table view. We therefore have to set the
selection style explicitly, to “None”, as the table view is already in edit mode when
we return to it from the Add City view and the cell is created.

We’re done! Click the Build and Run button on the Xcode toolbar to compile and start
the application in the simulator. Once it has started, click on the Edit button to put the
table view into edit mode and then click on the “Add New City...” cell. Enter a name
for the new city, as shown in Figure 5-28, and click Save. You should see something
that looks a lot like Figure 5-29. Click Done, and take the table view out of edit mode.
Clicking on the new city will take you to the city page; apart from the blank space where
the picture will be placed it should look the same as the other city pages in the guide.

If you don’t enter a city name in the Add City view, or if you click on the Back button
on the left rather than the Save button, no changes will be made to either the cities
array or the data model held by the application delegate.

The blank space where the image should be on our newly added city is a bit annoying;
the easiest way to get around this is to add a default image. The image you choose to
use for this placeholder image isn’t really relevant. I used the classic image of a question
mark on top of a folder, the image Mac OS X would display if it could not find my boot
disk, but you can use anything. Remember to keep your aspect ratio the same as you
scale your image, and copy it into your project, as we did with the other city images.

102 | Chapter 5: Table-View-Based Applications

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 5-28. The Add New City view

Figure 5-29. The City Guide view in edit mode with our new city added to the list

Edit Mode | 103

www.it-ebooks.info

http://www.it-ebooks.info/

You can add the image to the viewDidLoad: method of the CityController class. You’ll
be replacing the last line of code in the method (pictureView.image = thisCity.city
Picture;) with the code shown in bold:

- (void)viewDidLoad {
 CityGuideDelegate *delegate = (CityGuideDelegate *)
 [[UIApplication sharedApplication] delegate];
 City *thisCity = [delegate.cities objectAtIndex:index.row];

 self.title = thisCity.cityName;
 descriptionView.text = thisCity.cityDescription;
 descriptionView.editable = NO;

 UIImage *image = thisCity.cityPicture;
 if (image == nil) {
 image =[UIImage imageNamed:@"QuestionMark.jpg"];
 }
 pictureView.image = image;

}

Here we added a check to see whether the cityPicture returned by the City object is
equal to nil. If so, we simply substitute the default image; this should produce some-
thing similar to Figure 5-30.

Figure 5-30. The default image displayed in the CityController view

104 | Chapter 5: Table-View-Based Applications

www.it-ebooks.info

http://www.it-ebooks.info/

We’re done, at least for this chapter. We’ll come back to the City Guide application to
fix the remaining problems later. For instance, we’ll return to it briefly in the next
chapter where I’ll show you how to use the UIImagePickerController to attach images
to your new City Guide entries. We’ll also come back to it again in Chapter 8 where
I’ll address how to store your data. At the moment, while users can add new cities and
delete cities, if they quit the application and restart it they’ll be back to the original
default set of cities.

Edit Mode | 105

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6

Other View Controllers

Now that we’ve discussed the UITableView and UINavigationController (as well as their
associated classes and views) and built an iPhone application using them, you’ve ac-
tually come a long way toward being able to write applications on your own. With
these classes under your belt, you have the tools to attack a large slice of the problem
space that iPhone applications normally address.

In this chapter, we’ll look at some of the other view controllers and classes that will be
useful when building your applications: simple two-screen views (utility applications),
single-screen tabbed views (tab bar applications), a view controller that takes over the
whole screen until dismissed (modal view controller), and a view controller for selecting
video and images (image picker view controller).

Utility Applications
Utility applications perform simple tasks: they have a one-page main view and another
window that is brought into view with a flip animation. The Stocks and Weather ap-
plications that ship with the iPhone and iPod touch are examples of applications that
use this pattern. Both are optimized for simple tasks that require the absolute minimum
of user interaction. Such applications are usually designed to display a simple list in the
main view, with preferences and option settings on the flip view. You access the flip
view by clicking a small i icon from the main view.

The Xcode Utility Application template implements the main view and gives the user
access to a flipside view. It is one of the most extensive templates in Xcode and it
implements a fully working utility application, which is fortunate as the documentation
Apple provides regarding this type of application is otherwise somewhat lacking in
details.

Open Xcode and start a new project. Click Application under the iPhone OS group,
and then select Utility Application from the New Project window as the template (see
Figure 6-1). Click Choose, and name the project “BatteryMonitor” when requested.

107

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 6-2 shows the Project window in Xcode and lists the files the template generates.
The names of the classes the template generates are meant to hint strongly at what each
of them does, but if not, Xcode has conveniently put the relevant classes into groups.
Since the template implements all the logic necessary to control the application’s in-
terface, we only need to implement our own UI and some basic logic to control it.

Click Build and Run to compile and run the application. You’ll find that it’s a fully
working utility application, although with blank main and flipside views.

Making the Battery Monitoring Application
The somewhat descriptive name of the application has probably revealed its purpose
already. We’re going to implement a simple battery monitoring application, and to do
so I’m going to introduce you to the UIDevice class. This is a singleton class that provides
information relating to your hardware device. From it you can obtain information about
your device such as its unique ID, assigned name, device model, and operating system
name and version. More importantly, you can also use the class to detect changes in
the device’s characteristics such as physical orientation, and register for notifications
about when these characteristics change.

Figure 6-1. Selecting Utility Application in the New Project window

108 | Chapter 6: Other View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

A singleton class is restricted in some manner such that only one instance
of the class can be created. This design pattern can be used to coordinate
actions or information across your application. Although some argue
that because use of singleton classes introduces global state into your
application, and is therefore almost by definition a bad thing, I think
that when it is used correctly the pattern can simplify your
architecture considerably.

Information—and notifications—about the device battery state weren’t introduced
until the 3.0 update of the SDK. Even now the implementation is somewhat coarse-
grained (notifications regarding charge level changes occur in only 5% increments).

Figure 6-2. The new Utility Application project open in Xcode

Utility Applications | 109

www.it-ebooks.info

http://www.it-ebooks.info/

The UIDevice class has several limitations, and some developers have
resorted to the underlying IOKit framework to obtain more information
about the device (e.g., better precision to your battery measurements).
However, while Apple marked the IOKit as a public framework, no
documentation or header files are associated with it.

If you use this framework and try to publish your application on the
App Store, it is possible that Apple will reject it for using a private
framework despite its apparent public status. In the official documen-
tation, IOKit is described as “Contain[ing] interfaces used by the device.
Do not include this framework directly.”

Building our interface

First we’re going to build our interface. Double-click on the MainView.xib file (located
in the Resources group in the Groups & Files pane) to open it in Interface Builder.
You’ll see that the default view that Xcode generated already has the Info button to
switch between the main and flipside views. Not only is it there, but it’s connected to
the template code, so it’s already working.

The UI will consist of just three UILabel elements, so drag and drop three labels from
the Library (⌘-Shift-L, then choose Cocoa Touch→Inputs & Values) onto the Main
View window, and position them roughly as shown in Figure 6-3.

Figure 6-3. The Main View NIB file being edited in Interface Builder

110 | Chapter 6: Other View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

You can use the Attributes Inspector (⌘-1) to change the font size and color as I have
done with my view. We’ll be setting the text of the labels from inside our code, but for
now I’ve added placeholder text (“100%”, “State:”, and “Unknown”) using the At-
tributes tab so that I can position the labels more neatly and get a better idea of how
my UI will look.

That’s all we’re going to do to the main view. Save the file and return to Xcode. Open
the FlipsideView.xib file. You’ll see that this time the default view that Xcode generates
already has a navigation bar and a Done button present and connected to the template
code. You need to add a label (UILabel) and switch (UISwitch) to this interface, as shown
in Figure 6-4.

Figure 6-4. The flipside view being edited in Interface Builder

Drag and drop the two elements from the Library window (⌘-Shift-L, then choose
Cocoa Touch→Inputs & Values) into the Flipside View window and position them as
shown in Figure 6-4. Set the text of the label to “Monitor Battery”, and using the At-
tributes pane of the Inspector window set the label text color to white. The default
black text won’t show up well against the dark gray background of the view. That’s all
that’s needed. Save the file in Interface Builder, and open the BatteryMonitorAppDe-
legate.h file in Xcode (it’s in the Application Delegate folder in the Groups & Files pane).

Utility Applications | 111

www.it-ebooks.info

http://www.it-ebooks.info/

Writing the code

In the interface, we need to add a Boolean variable that stores the flag that indicates
whether the app is currently monitoring the battery state. Add the following inside the
@interface declaration:

BOOL monitorBattery;

We also need to make this a property. Add the following next to the existing @prop
erty declarations (but before the @end):

@property (nonatomic) BOOL monitorBattery;

This means that in the BatteryMonitorAppDelegate.m implementation file, we also need
to synthesize the property to create the accessor methods. Open that file and add the
following next to the existing @synthesize statements:

@synthesize monitorBattery;

By default, we’re going to make it so that the application starts with battery monitoring
turned off, so in the applicationDidFinishLaunching: method we must set the flag to
NO. Add the following to the top of the method:

self.monitorBattery = NO;

Note that we access the variable by using the accessor method generated by the
@synthesize statement. It’s important to realize that accessing the instance variable
directly using monitorBattery and accessing the property via a call to self.monitor
Battery: are completely different in Objective-C since you are sending a message
when you invoke the property, rather than directly accessing the variable.

Next, open the FlipSideViewController.h interface file (you can find it in the Flipside
View folder in the Groups & Files pane) and add the lines shown in bold:

@class BatteryMonitorAppDelegate;

@interface FlipsideViewController : UIViewController {
 id <FlipsideViewControllerDelegate> delegate;
 BatteryMonitorAppDelegate *appDelegate;
 IBOutlet UISwitch *toggleSwitch;
}

This is a forward declaration of the BatteryMonitorAppDelegate class, which allows
you to refer to it elsewhere in this file.

We’re going to be using the switch (UISwitch) we added to the NIB file to toggle
battery monitoring on and off. Because we’re storing the state of that switch in the
application delegate, we need this variable so that we can refer to the application
delegate.

Finally, we need to add a UISwitch variable and mark it as an IBOutlet for Interface
Builder.

112 | Chapter 6: Other View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

In the FlipSideViewController.m implementation file, you first need to import the ap-
plication delegate header file (using the @class forward declaration in the interface file
does not remove the need to #import this header file). See Chapter 4 for details on the
#import statement. Add the following line to the top of FlipSideViewController.m:

#import "BatteryMonitorAppDelegate.h"

Next, make the changes shown in bold to the viewDidLoad: method:

- (void)viewDidLoad {
 [super viewDidLoad];
 self.view.backgroundColor = [UIColor viewFlipsideBackgroundColor];
 self.title = @"Preferences";

 appDelegate = (BatteryMonitorAppDelegate *)
 [[UIApplication sharedApplication] delegate];
 toggleSwitch.on = appDelegate.monitorBattery;
}

This sets the title of the view.

We grab a reference to the application delegate here.

Here, we set the status of the toggle switch to reflect whether we’re currently mon-
itoring the battery.

Now modify the done: method to save the status of the toggle switch back to the
application delegate when you close the flipside view:

- (IBAction)done {
 appDelegate.monitorBattery = toggleSwitch.on;
 [self.delegate flipsideViewControllerDidFinish:self];
}

Finally, add the following code to the dealloc: method (this releases the tog
gleSwitch variable):

- (void)dealloc {
 [toggleSwitch release];
 [super dealloc];
}

The modifications we need to make to the main view controller are a bit more extensive
than those we’ve made thus far. Open the MainViewController.h interface file in Xcode
and make the changes shown in bold. You can find this file in the Main View folder of
the Groups & Files pane.

#import "FlipsideViewController.h"

@class BatteryMonitorAppDelegate;

@interface MainViewController : UIViewController
 <FlipsideViewControllerDelegate>
{
 BatteryMonitorAppDelegate *appDelegate;
 IBOutlet UILabel *levelLabel;

Utility Applications | 113

www.it-ebooks.info

http://www.it-ebooks.info/

 IBOutlet UILabel *stateLabel;
}

- (IBAction)showInfo;

- (void)batteryChanged:(NSNotification *)note;
- (NSString *)batteryLevel;
- (NSString *)batteryState:(UIDeviceBatteryState)batteryState;

@end

This is a forward declaration of the BatteryMonitorAppDelegate class, which allows
you to refer to it elsewhere in this file.

This is a reference to the application delegate.

Here, we’ve added an IBOutlet for each of the two labels in the main view that we’re
going to be updating: one for the battery charge level and the other for the current
charging state.

This method will be called when we receive a notification that there has been a
change in the state of the battery.

This is a convenience method to wrap the call to UIDevice to query the current battery
level and return an NSString that we can use for the text of one of the UILabels.

This is another convenience method to convert a UIDeviceBatteryState into an
NSString that we can use for the text of one of the other UILabels.

Save the interface file, and then open the MainViewController.m implementation file
in Xcode. We declared a reference to the application delegate in the interface file, so
now we need to import the relevant header file. Add this line at the top:

#import "BatteryMonitorAppDelegate.h"

We also need to grab a reference to the application delegate in the viewDidLoad: method.
Uncomment the method (remove the lines that consist solely of /* and */ immediately
before and after the method) and add the lines shown in bold:

- (void)viewDidLoad {
 [super viewDidLoad];
 appDelegate = (BatteryMonitorAppDelegate *)
 [[UIApplication sharedApplication] delegate];

}

Next, we need to implement the viewWillAppear: method. At this point, you may be
wondering what the difference is between this method and the previous viewDidLoad:
method. The answer is that they’re called at different times: viewWillAppear: will be
called each time the view becomes visible, while viewDidLoad: is called only when the
view is first loaded. Because the changes we make to the preferences (on the flip side)
affect the main view, we need to use viewWillAppear:, which is triggered each time we

114 | Chapter 6: Other View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

flip back from the preferences view to the main view. Add the following to MainView-
Controller.m:

- (void)viewWillAppear:(BOOL)animated {
 UIDevice *device = [UIDevice currentDevice];
 device.batteryMonitoringEnabled = appDelegate.monitorBattery;

 if (device.batteryMonitoringEnabled) {
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(batteryChanged:)
 name:@"UIDeviceBatteryLevelDidChangeNotification" object:nil];

 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(batteryChanged:)
 name:@"UIDeviceBatteryStateDidChangeNotification" object:nil];
 } else {

 [[NSNotificationCenter defaultCenter] removeObserver:self
 name:@"UIDeviceBatteryLevelDidChangeNotification" object:nil];
 [[NSNotificationCenter defaultCenter] removeObserver:self
 name:@"UIDeviceBatteryStateDidChangeNotification" object:nil];
 }
 levelLabel.text = [self batteryLevel];
 stateLabel.text = [self batteryState:device.batteryState];

 [super viewWillAppear:animated];

}

This sets the current battery monitoring state in the singleton UIDevice object to
correspond to our current battery monitoring state, as determined by the switch on
the flipside view.

If battery monitoring is enabled, we’re going to add our object as an observer to
receive notifications when either the battery level or the battery state changes. If
either of these events occurs, the batteryChanged: method will be called.

If battery monitoring is disabled, we’re going to remove the object as an observer
for these notifications.

In either case, we’ll populate the text of our two UILabels using the convenience
methods (batteryState: and batteryLevel:, which we’ll define shortly).

Since the object may be registered as an observer when we deallocate this view, we also
need to make sure we remove ourselves as an observer of any notifications in the
dealloc: method. Add the lines shown in bold to the dealloc: method:

- (void)dealloc {
 [[NSNotificationCenter defaultCenter] removeObserver:self];
 [levelLabel release];
 [stateLabel release];
 [super dealloc];
}

Utility Applications | 115

www.it-ebooks.info

http://www.it-ebooks.info/

We also need to implement the batteryChanged: method; this method is called when
our application is notified of a change in battery state. Here, all we’re doing is updating
the text of our two labels when we receive a notification of a change. Add the following
to MainViewController.m:

- (void)batteryChanged:(NSNotification *)note {
 UIDevice *device = [UIDevice currentDevice];
 levelLabel.text = [self batteryLevel];
 stateLabel.text = [self batteryState:device.batteryState];
}

Finally, we need to implement those convenience methods. Add the following to
MainViewController.m:

- (NSString *)batteryLevel {
 UIDevice *device = [UIDevice currentDevice];

 NSString *levelString = nil;
 float level = device.batteryLevel;
 if (level == -1) {
 levelString = @"---%";
 } else {
 int percent = (int) (level * 100);
 levelString = [NSString stringWithFormat:@"%i%%", percent];
 }
 return levelString;
}

- (NSString *)batteryState:(UIDeviceBatteryState)batteryState {

 NSString *state = nil;
 switch (batteryState) {
 case UIDeviceBatteryStateUnknown:
 state = @"Unknown";
 break;
 case UIDeviceBatteryStateUnplugged:
 state = @"Unplugged";
 break;
 case UIDeviceBatteryStateCharging:
 state = @"Charging";
 break;
 case UIDeviceBatteryStateFull:
 state = @"Full";
 break;
 default:
 state = @"Undefined";
 break;
 }
 return state;
}

We’re done in Xcode; let’s go back into Interface Builder to make all the necessary
connections. Locate FlipsideView.xib under Resources in the Groups & Files pane and
double-click it to open it in Xcode.

116 | Chapter 6: Other View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

Wiring the application in Interface Builder

In the FlipsideView.xib file we need to make only one connection: between the tog
gleSwitch outlet and the UISwitch. To make the connection, click File’s Owner in the
FlipsideView.xib window, and then drag the toggleSwitch outlet from the Connections
Inspector (⌘-2) to the switch, as shown in Figure 6-5.

Figure 6-5. Connecting the toggleSwitch outlet to the UISwitch in the flipside view

Save the FlipsideView.xib file and open the MainView.xib file. This time we need to
make two connections. Just as you did in FlipsideView.xib, select File’s Owner and use
the Connections Inspector to make connections between the levelLabel and stateLa
bel outlets and their corresponding UILabel in the main view, as shown in Figure 6-6.

At this point, we’re done. We’ve implemented everything we need to in code, and we’ve
linked all of our outlets to our interface. Unfortunately, since this application makes
use of the UIDevice battery monitoring API, and iPhone Simulator doesn’t have a bat-
tery, we’re going to have to test it directly on the device. We covered deploying appli-
cations onto your iPhone or iPod touch at the end of Chapter 3.

Utility Applications | 117

www.it-ebooks.info

http://www.it-ebooks.info/

To deploy the application onto your device, you need to edit the Bundle Identifier inside
the BatteryMonitor-Info.plist file to something appropriate, and you need to set the
Code Signing Identity associated with the project in the Project Info window (although
in most cases Xcode will select an appropriate signing identity automatically, if you
have more than one developer profile installed this isn’t guaranteed). For more infor-
mation, see “Putting the Application on Your iPhone” on page 37 in Chapter 3. Once
this is done, change the Active SDK in the overview window to “iPhone Device” and
click Build and Run. Xcode should compile and deploy the application onto your
iPhone.

Click the Info button in the bottom-lefthand corner to switch to the flip side and enable
battery monitoring in the preferences pane. Click the Done button and return to the
main view. Both the battery level and the state should have changed. While the battery
level only changes every 5%, you can get some immediate feedback by plugging and
unplugging your device from your Mac. The state should change from “Full” or
“Charging” (see Figure 6-7) to “Unplugged”.

Figure 6-6. Connecting the two outlets in our code to the UILabels in the main view

118 | Chapter 6: Other View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

Tab Bar Applications
If you need to provide a number of different views on the same data set, or separately
present a number of different tasks relating to your application, Apple recommends
using a tab bar application. Both the iTunes and the App Store applications that ship
with the iPhone and iPod touch are examples of applications that use this pattern.

To create a tab bar application, open Xcode and start a new project. Select Tab Bar
Application from the New Project window as the template and name it “TabExample”
when requested.

Unlike some of the other application templates provided by Apple, there are actually
several different approaches you can take to building a tab bar application: loading a
tab’s view from a secondary NIB, managing the tab’s view entirely from a view con-
troller, or using a hybrid of these two approaches.

The default template provides a tab bar application with two tab items, but the way
the view is managed for each of these items is very different. Double-click Main-
Window.xib (it’s in the Resources group) to open it in Interface Builder. Next, make
sure MainWindow.xib is the foremost window and switch to List Mode (⌘-Option-2),
then fully expand Tab Bar Controller by Option-clicking the disclosure triangle to its
left.

Figure 6-7. The main view and the flipside view of the Battery Monitor application

Tab Bar Applications | 119

www.it-ebooks.info

http://www.it-ebooks.info/

In Figure 6-8 you can see that under the Tab Bar Controller entry is the tab bar itself,
and then two view controllers, each with a tab bar item.

Figure 6-8. The MainWindow.xib file generated by Xcode as part of the Tab Bar Application template

Notice that the “Selected View Controller (Second)” view controller has type UIView
Controller. Select it and open the Attributes Inspector window (⌘-1) and you’ll also
see that it loads its view from the SecondView.xib file that Xcode generated when you
created the new project.

However, the “First View Controller (First)” entry is of type FirstViewController rather
than UIViewController. The view here is managed slightly differently. It has no linked
NIB file, and the custom view controller manages its own view.

The template generated by Apple therefore illustrates two very different ways to manage
views inside a tab bar application. However, I recommend that you use neither of these
two. Instead, I usually approach view management in a slightly different manner: by
using a custom view controller class to manage the view, but storing the view outside
the MainWindow.xib in a separate NIB file.

Refactoring the Template
Let’s refactor the current template to reflect my prejudices. Don’t worry if you think
one of the other approaches sounds better; you should learn enough while refactoring
the template to manage your views in either of the other two ways.

120 | Chapter 6: Other View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

Creating the first tab

In Xcode, create a new View NIB called FirstView.xib. Then back in Interface Builder
(MainWindow.xib, not the newly created NIB) click on the UIView managed by “First
View Controller (First)” and press the Backspace key to delete it. This will also delete
its children (a label and text view).

Next, click on “First View Controller (First)” and navigate to the Attributes Inspector
(⌘-1). Using the NIB Name drop down, select your newly created FirstView NIB from
the list of NIB files in the project.

To add a new View XIB to the project, right-click or Ctrl-click on the
Resources group in the lefthand pane in Xcode and select Add→New
File. When the New File window opens select User Interface from under
iPhone OS, then choose View XIB and click Next. Enter the name for
the new NIB and then click Finish.

Now open the FirstView.xib file and click File’s Owner in the main window. Then,
using the Identity Inspector (⌘-4), change the Class identity of File’s Owner from
NSObject to UIViewController. Next, use the Connections Inspector (⌘-2) to connect
the view outlet to the view in FirstView.xib.

Save both of the NIB files and return to Xcode.

Creating the second tab

We also need to create a custom view controller for the second tab view. Go back into
Xcode and right-click or Ctrl-click on the Classes group and select Add→New File.
When the File window opens select a UIViewController subclass from the Cocoa Touch
Class panel, but unlike earlier examples in this book, uncheck the “With XIB for user
interface” box (we already have a SecondView.xib file in the project). Click Next. When
asked, name the new view controller “SecondViewController.m”.

Go back to MainWindow.xib in Interface Builder and click on the “Second View Con-
troller (Second)” entry. In the Identity Inspector (⌘-4) change the Class identity from
UIViewController to SecondViewController. You don’t need to connect the view outlet
as you did for the FirstView.xib file because Xcode created the second tab bar item with
its outlets connected correctly by default.

Wrapping up the refactoring

After doing this refactoring, you should end up with a MainWindow.xib file that looks
a lot like that shown in Figure 6-9. Make sure you save the NIB file after finishing the
refactoring.

Tab Bar Applications | 121

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Another Tab Bar Item
Let’s add another tab bar item so that you can see how to create one from scratch. With
MainWindow.xib open in Interface Builder, drag and drop a new tab bar item (not a
tab bar) from the Library window (under Cocoa Touch→Windows, Views, & Bars)
onto the tab bar controller in the MainWindow.xib window. Click the disclosure tri-
angle next to the new tab bar item, and you’ll notice that it generates another view
controller with an associated tab bar item. The new view controller is similar to “Second
View Controller (Second)” before refactoring, with a type of UIViewController. If you
check the Attributes tab of the Inspector window, however, you’ll notice that the new
controller currently has no view associated with it in Interface Builder, as shown in
Figure 6-10.

We now need to add a view controller to manage this tab. Go back into Xcode and
right-click or Ctrl-click on the Classes group and select Add→New File again. When
the File window opens, select a UIViewController subclass from the Cocoa Touch Class
panel; this time check the “With XIB for user interface” box, as you need Xcode to
generate a NIB. When asked, name the new view controller “ThirdViewController.m”.

For neatness, you may want to drag the ThirdViewController.xib file
from the Classes group to the Resources group. You may also want to
rename the ThirdViewController.xib file to ThirdView.xib to keep your
naming conventions consistent throughout the application.

Figure 6-9. The MainWindow.xib file after refactoring

122 | Chapter 6: Other View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

After doing this, edit MainWindow.xib in Interface Builder by changing the type of the
newly created “View Controller (Item)” from UIViewController to ThirdViewControl
ler in the Identity tab of the Inspector window, and then set the NIB name to Third
View in the Attributes Inspector (⌘-1).

You should explore some of the standard tab bar items that Apple provides; for exam-
ple, expand the newly added third view controller’s disclosure triangle in the
MainWindow.xib window. Next, select the tab bar item underneath it and open the
Attributes Inspector (⌘-1). Try selecting something other than Custom for its identifier
and see what happens.

This example assumes you use the Custom identifier, so make sure you set it back to
Custom when you’re done exploring.

After selecting Custom, you should change the name of the item from “Item” to
“Third”. Although currently our tab bar item doesn’t have an image, we could associate
one with (each of) our tabs using the Image drop down in the Attributes tab. Just drag
and drop the image you want to use into the project in the same way you added the
images for the City Guide application in Chapter 5. To look like Apple’s icons, your
images cannot be larger than 32×32 pixels in size and they must have a transparent
background. I’ve found that PNG images between 20 and 30 pixels work well as tab
bar icons.

Figure 6-10. Adding another tab bar item to the application

Tab Bar Applications | 123

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Tab Bar Icons
Creating tab-bar-based applications means you must create icons for the bar. You may
be able to use the system-supplied icons, either by setting the Identifier by clicking on
the UITabBarItem on the MainWindow NIB file and changing the Identity value in the
Attributes tab of the Inspector window inside Interface Builder, or directly via code
inside your view controller’s init: method, as shown here:

self.tabBarItem = [[UITabBarItem alloc]
 initWithTabBarSystemItem:UITabBarSystemItemSearch tag:0];

However, the selection of available icons is fairly limited and you will inevitably have
to resort to creating your own. Apple has this to say on tab bar icons: “The unselected
and selected images displayed by the tab bar are derived from the images that you set.
The alpha values in the source image are used to create the other images—opaque
values are ignored.”

Effectively the alpha channel of your image will determine the shading of your icon.
Tab bar icons should therefore be in PNG format, be no larger than 30×30 pixels in
size, and have a transparent background. Multicolor icons are ignored as the icons
themselves are an opaque mask which the iPhone will use to generate the actual tab
bar icon.

Finishing Up
Finally, edit the three NIB files—FirstView.xib, SecondView.xib, and ThirdView.xib—
and add a large (in 144 pt font) label saying “1”, “2”, and “3” to each respective view.
This way you can confirm that the correct one is being activated. SecondView.xib will
have some labels on it that were placed there when Xcode generated the project from
its template; you can delete these labels.

Make sure you save all the NIB files. Then, click Build and Run to compile, deploy,
and run the application in iPhone Simulator, as shown in Figure 6-11.

Despite the fact that we haven’t written a single line of code in this section, you should
now have a working, if rather basic, tab bar application.

Although I haven’t walked you through the process of building a full-blown application,
you should have begun to see the commonalities and familiar patterns emerging in this
application. Our application has an application delegate along with three custom view
controllers managing each view. This is a very similar arrangement to both the table
view application we wrote in Chapter 5 and the utility application we wrote earlier in
this chapter.

At this point, you may want to try building your own application on top of the infra-
structure we have created so far. Start with something simple where changing some-
thing in one view affects the contents of another view. Don’t worry; take your time,
and I’ll be here when you get back.

124 | Chapter 6: Other View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

Modal View Controllers
So far in this chapter we’ve looked at two of Apple’s application templates. However,
in this section we’re going to focus once again on an individual view controller—or
rather, a way to present a view controller to the user. After table views and the UINavi
gationController it’s probably one of the most heavily used ways to present data: it’s
the modal view controller.

You’ll have seen a modal controller in action many times when using your iPhone. A
view slides in from the bottom of the screen and is usually dismissed with a Done button
at the top of the screen. When dismissed, it slides back down the screen, disappearing
at the bottom.

In the main controller we would generally have a button or other UI element; tapping
this would trigger an event linked to the following method in the view controller, which
would bring up the modal view:

-(void)openNewController:(id)sender {
 OtherController *other = [[OtherController alloc] init];
 [self presentModalViewController:other animated:YES];
 [other release];
}

Figure 6-11. The tab bar application running in the simulator with SecondView selected as the active
tab

Modal View Controllers | 125

www.it-ebooks.info

http://www.it-ebooks.info/

We instantiate the view controller that manages the view we wish to display.

We present the view managed by the view controller. Note that presenting a view
controller modally will explicitly retain it, hence the need for the release in the next
line.

We release the view controller. Once it is dismissed, the retain count (see “The alloc,
retain, copy, and release Cycle” on page 48 in Chapter 4) will drop to zero.

In the modal view itself, we would implement a button or some other way to close the
view, which would call this method in the view controller:

-(void)doneWithController:(id)sender {
 [self dismissModalViewControllerAnimated:YES];
}

This dismisses the current modal view.

Modifying the City Guide Application
The best way to explain the modal view is to show it in action. For that we’re going to
go back to the City Guide application we built in Chapter 5. We’re going to make some
fairly extensive changes to it, so you should make a copy of the project first and work
with the copy while you make your modifications. In this section, I’ll show you how
to take your code apart and put it back together again in an organized fashion. This
occurs a lot when writing applications, especially for clients who have a tendency to
change their mind about what they want out of the application in the first place.

Open the Finder and navigate to the location where you saved the CityGuide project;
see Figure 6-12.

Figure 6-12. The CityGuide project folder in the Finder

126 | Chapter 6: Other View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

Right-click or Ctrl-click on the folder containing the project files and select Duplicate.
A folder called CityGuide copy will be created containing a duplicate of our project.
You should probably rename it to something more sensible. I suggest CityGuide2. Now
open the new version of the project in Xcode and select Project→Rename from the
Xcode menu bar. Enter CityGuide2 when prompted and click on the Rename button to
rename the project.

In Chapter 5, we built an application that lets users both add and delete city entries in
our table view. Adding the functionality to delete table view cells was fairly simple; the
complicated part was adding the ability to add cities. So, let’s take a step back and look
at another way to implement that functionality.

First we’re going to go into the RootController implementation and back out of the
changes that allowed users to edit the table view. We’re going to replace the Edit button
and the associated implementation with an Add button, reusing the AddCityControl
ler code and associated view, but presenting the Add City view modally instead of
using the navigation controller.

You may wonder about deleting lots of perfectly good code, but refactoring function-
ality like this is a fairly common task when you change your mind about how you want
to present information to the user, or if the requirements driving the project change.
This is good practice for you.

If you want to do a global find (and replace) over the entire project for
a word or phrase you can do so from the Edit menu. Selecting
Edit→Find→Find in Project will bring up the Project Find window.

To remove functionality like this, first you need to figure out what needs to be removed.
If you don’t know the author of the original application this can sometimes be difficult.
Do a project-wide search for “editing”, as shown in Figure 6-13. If you do that you’ll
see that the only mention of “editing” is in the RootController.m file. The changes we’ll
need to make are actually fairly tightly constrained inside a single class. We’ll have to
make some minor changes elsewhere in the project. Limiting the scope of necessary
changes when refactoring code in this way is one of the main benefits of writing code
in an object-oriented manner.

Open the RootController.m file in Xcode. Begin the refactoring by deleting the following
methods in their entirety:

• setEditing:animated:

• tableView:commitEditingStyle:forRowAtIndexPath:

• tableView:editingStyleForRowAtIndexPath:

Modal View Controllers | 127

www.it-ebooks.info

http://www.it-ebooks.info/

Remember that the methods as they appear in the file have longer,
more complicated names. For example, setEditing:animated: is
(void)setEditing:(BOOL)editing animated:(BOOL) animated.

Next, do the following:

1. In the viewDidLoad: method, remove the line that adds the self.editButtonItem to
the navigation bar.

2. In the tableView:cellForRowAtIndexPath: method, remove the section enclosed in
the if(self.editing) { ... } conditional statement, and the else { ... }
statement that adds the “Add New City...” cell. Additionally, you should remove
the line that sets the editingAccessoryType inside the conditional statement.

3. Similarly, remove the if(self.editing) { ... } conditional statement in the
tableView:numberOfRowsInSection: method.

4. Finally, in the tableView:didSelectRowAtIndexPath: method remove the
&& !self.editing expression from the first if block. Remove the second if block
(which deals with what happens if we are editing) in its entirety.

We’re done. If you do a global find in the project for “editing” you should now come
up blank, and the class should appear as shown here:

Figure 6-13. The results of a global find across the CityGuide2 project for “editing”

128 | Chapter 6: Other View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

#import "RootController.h"
#import "CityGuideDelegate.h"
#import "City.h"
#import "CityController.h"
#import "AddCityController.h"

@implementation RootController

@synthesize tableView;

#pragma mark UIViewController Methods

- (void)didReceiveMemoryWarning {
 [super didReceiveMemoryWarning];
}

- (void)viewDidLoad {
 self.title = @"City Guide";
 CityGuideDelegate *delegate =
 (CityGuideDelegate *)[[UIApplication sharedApplication] delegate];
 cities = delegate.cities;
}

- (void)dealloc {
 [tableView release];
 [cities release];
 [super dealloc];
}

#pragma mark UITableViewDataSource Methods

- (UITableViewCell *)tableView:(UITableView *)tv
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 UITableViewCell *cell =
 [tv dequeueReusableCellWithIdentifier:@"cell"];
 if(nil == cell) {
 cell = [[[UITableViewCell alloc]
 initWithFrame:CGRectZero reuseIdentifier:@"cell"] autorelease];
 }

 if (indexPath.row < cities.count) {
 City *thisCity = [cities objectAtIndex:indexPath.row];
 cell.textLabel.text = thisCity.cityName;
 cell.textLabel.textColor = [UIColor blackColor];
 }
 return cell;
}

- (NSInteger)tableView:(UITableView *)tv
 numberOfRowsInSection:(NSInteger)section
{
 NSInteger count = cities.count;
 return count;
}

Modal View Controllers | 129

www.it-ebooks.info

http://www.it-ebooks.info/

#pragma mark UITableViewDelegate Methods

- (void)tableView:(UITableView *)tv
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath
{
 CityGuideDelegate *delegate =
 (CityGuideDelegate *)[[UIApplication sharedApplication] delegate];

 if (indexPath.row < cities.count) {
 CityController *city =
 [[CityController alloc] initWithIndexPath:indexPath];
 [delegate.navController pushViewController:city animated:YES];
 [city release];
 }
 [tv deselectRowAtIndexPath:indexPath animated:YES];
}

@end

Since you’ve now made fairly extensive changes to the view controller, you should test
it to see if things are still working. Click the Build and Run button on the Xcode toolbar,
and if all is well you should see something very similar to Figure 6-14. Tapping on one
of the city names should take you to its city page as before.

We’ve deleted a lot of code, so let’s write some more. In the viewDidLoad: method we
need to replace the Edit button that we deleted with an Add button.

Let’s add a button of style UIBarButtonSystemItemAdd and set things up so that when it
is clicked it will call the addCity: method in this class. Add the following code to the
viewDidLoad: method:

self.navigationItem.rightBarButtonItem = [[UIBarButtonItem alloc]
 initWithBarButtonSystemItem:UIBarButtonSystemItemAdd target:self
 action:@selector(addCity:)];

Since there isn’t an addCity: method right now, we need to declare it in the RootCon-
troller.h interface file. Open that file, and add this line after the @interface { ...}
declaration but before the @end directive:

- (void)addCity:(id)sender;

Now add the implementation to the RootController.m file:

- (void)addCity:(id)sender {
 AddCityController *addCity = [[AddCityController alloc] init];
 [self presentModalViewController:addCity animated:YES];
 [addCity release];
}

This looks almost identical to the snippet of code I showed you at the beginning of this
section, but the modal view we’re going to display is the one managed by our AddCity
Controller class.

130 | Chapter 6: Other View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

Now we need to make a couple of small changes to our AddCityController class. Open
the AddCityController.h interface file in Xcode and declare the saveCity: method as an
IBAction. Add this line after the @interface { ... } statement but before the @end
directive:

- (IBAction)saveCity:(id)sender;

Open the implementation file (AddCityController.m), and remove the last line (where
we pop the view controller off the navigation controller) and replace it with a line
dismissing the modal view controller. You’ll also change the return value of the
saveCity: method from void to IBAction here just as you did in the interface file:

- (IBAction)saveCity:(id)sender {
 CityGuideDelegate *delegate =
 (CityGuideDelegate *)[[UIApplication sharedApplication] delegate];
 NSMutableArray *cities = delegate.cities;

 UITextField *nameEntry = (UITextField *)[nameCell viewWithTag:777];
 UITextView *descriptionEntry =
 (UITextView *)[descriptionCell viewWithTag:777];

 if (nameEntry.text.length > 0) {
 City *newCity = [[City alloc] init];

Figure 6-14. The stripped-down City Guide application, looking a lot like it did in Figure 5-16 in
Chapter 5

Modal View Controllers | 131

www.it-ebooks.info

http://www.it-ebooks.info/

 newCity.cityName = nameEntry.text;
 newCity.cityDescription = descriptionEntry.text;
 [cities addObject:newCity];

 RootController *viewController = delegate.viewController;
 [viewController.tableView reloadData];
 }
 [self dismissModalViewControllerAnimated:YES];

}

We’re pretty much there at this point; however, before we finish with our changes here
we also need to go up to the viewDidLoad: method and delete the lines where we add
the Save button to the view (it’s a single statement beginning with self.naviga
tionItem.rightBarButtonItem that spans multiple lines).

Make sure you save the changes you made to the AddCityController class, and open
the AddCityController.xib file inside Interface Builder.

First, drag and drop into the view a navigation bar (UINavigationBar) from the Library
window (select Cocoa Touch→Windows, Views & Bars). Position it at the top of the
view, and resize the table view so that it fits in the remaining space. While you’re there,
change the title of the navigation bar from “title” to “Add New City”.

Next, drag and drop a bar button item (UIBarButtonItem) onto the navigation bar and
position it to the left of the title. In the Attributes Inspector (⌘-1) change the Identifier
from Custom to Done. You’ll see that this changes both the text and the style of the
button.

Finally, click on File’s Owner in the AddCityController.xib window and switch to the
Connections Inspector (⌘-2). Connect the saveCity: received action to the Done but-
ton, as I’ve done in Figure 6-15. Save your changes to the NIB file, as we’ve now finished
refactoring our City Guide application.

Click Build and Run on the Xcode toolbar to compile and start the application in iPhone
Simulator. When the application starts you should see something like Figure 6-16.
Clicking the Add button in the navigation bar should bring up our “Add City” view;
when it does, enter some information and click Done. You should see your test city
appear in the main table view.

Well done. We’ve just taken the City Guide application apart, put it back together
again, and made it work slightly differently. But what if you disliked the way we im-
plemented the ability to add cities in the first version of the application, preferring this
approach, but you still want to retain the ability to delete cities? You could still imple-
ment things so that a left-to-right swipe brought up the Delete button for the row; for
instance, Apple’s Mail application that ships with the iPhone and iPod touch takes this
approach. Just adding the following method back into RootController.m will reimple-
ment this functionality:

- (void) tableView:(UITableView *)tv
 commitEditingStyle:(UITableViewCellEditingStyle) editing

132 | Chapter 6: Other View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

 forRowAtIndexPath:(NSIndexPath *)indexPath {
 if(editing == UITableViewCellEditingStyleDelete) {
 [cities removeObjectAtIndex:indexPath.row];
 [tv deleteRowsAtIndexPaths:[NSArray arrayWithObject:indexPath]
 withRowAnimation:UITableViewRowAnimationLeft];
 }
}

Figure 6-15. Connecting the SaveCity: received action to the Done button in our newly modified
AddCityController.xib file

The Image Picker View Controller
As I promised in Chapter 5, I’m going to talk about the image picker view controller.
This view controller manages Apple-supplied interfaces for choosing images and mov-
ies, and on supported devices it takes new images or movies with the camera. As this
class handles all of the required interaction with the user, it is very simple to use. All
you need to do is tell it to start, and then dismiss it after the user selects an image or
movie.

Adding the Image Picker to the City Guide Application
In this section, we’ll continue to build on our City Guide application. Either of the two
versions of the application we now have will do, as all of the changes we’re going to

The Image Picker View Controller | 133

www.it-ebooks.info

http://www.it-ebooks.info/

make will be confined to the AddCityController class. In the preceding section, we made
only relatively minor changes in this class that won’t affect our additions here.

However, if you want to follow along, I’m going to return to our original version and
work on that. As we did in the preceding section, you should work on a copy of the
project, so right-click or Ctrl-click on the folder containing the project files and select
Duplicate. A folder called CityGuide copy will be created containing a duplicate of our
project. You should probably rename the folder to something more sensible. I suggest
CityGuide3, and renaming the project by selecting Project→Rename from the Xcode
menu bar.

The first thing we need to do is build an interface to allow the user to trigger the image
picker. If you remember from Chapter 5, our “Add City” view was built out of two
custom table view cells. The easiest way to add this ability is to add another table view
cell.

Open the AddCityController.xib file in Interface Builder. Drag and drop a table view
cell (UITableViewCell) from the Library window into the AddCityController.xib win-
dow. We need to resize this cell so that it can hold a small thumbnail of our selected
image, so go to the Size Inspector (⌘-3) and change its height from the default 44 pixels
to H = 83 pixels. At this point, we also need to resize the super-size table view cell for

Figure 6-16. The newly rewritten City Guide application, with our Add button on the right of the
navigation bar

134 | Chapter 6: Other View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

entering the description to account for this new cell. So, click on the description cell
and go to the Size tab of the Inspector window and change the height from H = 362 to
H = 279 pixels.

Go back to the new cell and grab a label (UILabel) from the Library window and drop
it onto the Table View Cell window (if the window is not open already, double-click
on the new cell in the AddCityController.xib window to open it). In the Attributes
Inspector (⌘-1) change the label’s text to “Add a picture:” and then switch to the Size
tab and position the label at X = 10 and Y = 28 with W = 126 and H = 21 pixels.

Next, grab an image view (UIImageView) from the Library window and drop it onto the
cell, then position it at X = 186 and Y = 7 and resize it to be W = 83 and H = 63 using
the Size tab of the Inspector window. In the Attributes tab, set the Tag attribute to 777
(this lets us easily refer to this subview from our code) and set the view mode to Aspect
Fill.

Finally, drop a round rect button (UIButton) onto the cell, and in the Attributes tab
change its type from Rounded Rect to Add Contact. The button should now appear as
a blue circle enclosing a plus sign. Position it to the right of the UIImageView, at X = 274
and Y = 25.

After doing this, you should have something that looks a lot like Figure 6-17. Set the
cell selection type to None in the Attributes tab, make sure you’ve saved your changes
to the NIB, and then open the AddCityController.h and AddCityController.m files in
Xcode.

In the AddCityController.h interface file, the first thing we need to do is add an
IBOutlet to allow us to connect our code to the new table view cell inside Interface
Builder. We must also add an instance variable of type UIImage called cityPicture,
which we’ll use to hold the image passed back to us from the image picker, along with
an addPicture: method that we’ll connect to the UIButton in the cell, allowing us to
start the image picker. Add the lines shown in bold to the file:

#import <UIKit/UIKit.h>

@interface AddCityController : UIViewController
 <UITableViewDataSource, UITableViewDelegate> {
 IBOutlet UITableView *tableView;
 IBOutlet UITableViewCell *nameCell;
 IBOutlet UITableViewCell *pictureCell;
 IBOutlet UITableViewCell *descriptionCell;

 UIImage *cityPicture;
}

- (void)saveCity:(id)sender;
- (IBAction)addPicture:(id)sender;

@end

The Image Picker View Controller | 135

www.it-ebooks.info

http://www.it-ebooks.info/

Before implementing the code to go with this interface, we need to quickly go back into
Interface Builder and make those two connections. Open the AddCityController.xib file
and click on File’s Owner, then use the Connections Inspector (⌘-2) to connect the
pictureCell outlet to your new UITableViewCell. Next, click on the addPicture:
received action and connect it to the UIButton in your table view cell; see Figure 6-18.
When you release the mouse button you’ll be presented with a pop-up menu of possible
events the button can generate (just like the Hello World example back in Chapter 3).
We want just a simple button click, so select the Touch Up Inside event.

We now need to save this file, and then go back into Xcode to finish our implementa-
tion. In the AddCityController.m implementation file, first we have to provide a default
image for the UIImage in the cell (otherwise, it will appear blank). We can do this inside
the viewDidLoad: method by adding this line (you’ll need an image called Question-
Mark.jpg for this to work; see “Capturing the City Data” on page 100 in Chapter 5 for
information on using this image in your project):

cityPicture = [UIImage imageNamed:@"QuestionMark.jpg"];

Figure 6-17. The Add Picture table view cell in Interface Builder with the UIImageView tagged as
view 777 so that we can access its subview from code more easily

136 | Chapter 6: Other View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

We also have to make some changes to the table view delegate and data source methods
(in the AddCityController.m implementation file) to take account of the new cell. First
we need to change the number of rows returned by the tableView:numberOfRowsInSec
tion: method from two to three. Make the change shown in bold:

 - (NSInteger)tableView:(UITableView *)tv
 numberOfRowsInSection:(NSInteger)section
{
 return 3;
}

Now we need to modify the tableView:cellForRowAtIndexPath: method to return the
extra cell in the correct position in our table view. Make the changes shown in bold:

- (UITableViewCell *)tableView:(UITableView *)tv
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 UITableViewCell *cell = nil;
 if(indexPath.row == 0) {
 cell = nameCell;
 } else if (indexPath.row == 1) {
 UIImageView *pictureView = (UIImageView *)[pictureCell viewWithTag:777];
 pictureView.image = cityPicture;
 cell = pictureCell;
 } else {
 cell = descriptionCell;

Figure 6-18. Connecting the addCity: received action to the UIButton in our new UITableViewCell
to allow it to trigger the image picker

The Image Picker View Controller | 137

www.it-ebooks.info

http://www.it-ebooks.info/

 }
 return cell;

}

In the first row of the table view, we return a nameCell, configured to allow the user
to enter the city name.

In the second row of the table view, we return the cell we just added. We first
populate the UIImageView with the image held by the cityPicture variable that we
initialized in the viewDidLoad: method earlier.

Finally, we return the table view cell that we set up to allow the user to enter a
description for the city.

We also need to change the tableView:heightForRowAtIndexPath: method to take
account of the new cell. Make the changes shown in bold:

- (CGFloat)tableView:(UITableView *)tv
 heightForRowAtIndexPath:(NSIndexPath *)indexPath
{
 CGFloat height;
 if(indexPath.row == 0) {
 height = 44;
 } else if(indexPath.row == 1) {
 height = 83;
 } else {
 height = 279;
 }
 return height;

}

We also need to remember to release the pictureCell variables in the dealloc: method.
We don’t have to release the cityPicture variable because it will be part of the
autorelease pool. Add the following to the dealloc: method:

[pictureCell release];

Finally, we need to add a placeholder implementation (after the instance methods
pragma mark) for our addPicture: method, which we’ll fill in later:

- (IBAction)addPicture:(id)sender {
 NSLog(@"addPicture: called.");
}

We’re done, at least for now. Click Build and Run in the Xcode toolbar to compile and
run the application in iPhone Simulator. Once the application has started, tap the Edit
button in the navigation bar and click Add New City (if you chose to modify the second
version of the guide, click the Add button). Figure 6-19 shows the new view.

Now we have an interface to trigger the image picker for us, so let’s implement the code
to do that. First we need to add a UIImagePickerController variable to the AddCity-
Controller.h interface file, along with a UIImage variable to hold the image returned by

138 | Chapter 6: Other View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

the image picker. We also need to declare the class to be a delegate. Make the changes
shown in bold:

@interface AddCityController : UIViewController
 <UITableViewDataSource, UITableViewDelegate,
 UIImagePickerControllerDelegate, UINavigationControllerDelegate> {
 IBOutlet UITableView *tableView;
 IBOutlet UITableViewCell *nameCell;
 IBOutlet UITableViewCell *pictureCell;
 IBOutlet UITableViewCell *descriptionCell;

 UIImage *cityPicture;
 UIImagePickerController *pickerController;
}

- (void)saveCity:(id)sender;
- (IBAction)addPicture:(id)sender;

@end

We need to declare the class as both a UIImagePickerControllerDelegate and a
UINavigationControllerDelegate. Both declarations are necessary for the class to
interact with the UIImagePickerController.

Figure 6-19. The New City view with our new UITableViewCell

The Image Picker View Controller | 139

www.it-ebooks.info

http://www.it-ebooks.info/

In the AddCityController.m implementation file, we need to modify the viewDidLoad:
method to initialize our UIImagePickerController. Make the changes shown in bold:

- (void)viewDidLoad {
 self.title = @"New City";
 self.navigationItem.rightBarButtonItem = [[UIBarButtonItem alloc]
 initWithBarButtonSystemItem:UIBarButtonSystemItemSave
 target:self action:@selector(saveCity:)];
 cityPicture = [UIImage imageNamed:@"QuestionMark.jpg"];

 pickerController = [[UIImagePickerController alloc] init];
 pickerController.allowsImageEditing = NO;
 pickerController.delegate = self;
 pickerController.sourceType =
 UIImagePickerControllerSourceTypeSavedPhotosAlbum;
}

We allocate and initialize the UIImagePickerController (this means we’re responsi-
ble for it and we must release it inside our dealloc: method).

When using the image picker, the user may be allowed to edit the selected image
before it is passed to our code. This disables that option here.

We set the delegate class to be this class.

Finally, we select the image source. There are three: UIImagePickerControllerSour
ceTypeCamera, UIImagePickerControllerSourceTypePhotoLibrary, and UIImagePicker
ControllerSourceTypeSavedPhotosAlbum. Each presents different views to the user,
allowing him to take an image with the camera, pick it from the image library, or
choose something from his photo album.

We also need to implement the addPicture: method, the method called when we tap
the button in our interface. This method simply starts the image picker interface, pre-
senting it as a modal view controller. Replace the placeholder addPicture: method you
added to the AddCityController.m file as part of the instance methods pragma section
with the following:

- (IBAction)addPicture:(id)sender {
 [self presentModalViewController:pickerController animated:YES];
}

Next, we need to implement the delegate method that will tell our code the user has
finished with the picker interface, the imagePickerController:didFinishPickingMedia
WithInfo: method. Add the following to AddCityController.m inside the UIImagePick
erController method’s pragma section:

- (void)imagePickerController:(UIImagePickerController *)picker
 didFinishPickingMediaWithInfo:(NSDictionary *)info
{
 [self dismissModalViewControllerAnimated:YES];
 cityPicture = [info objectForKey:@"UIImagePickerControllerOriginalImage"];

 UIImageView *pictureView = (UIImageView *)[pictureCell viewWithTag:777];

140 | Chapter 6: Other View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

 pictureView.image = cityPicture;
 [tableView reloadData];

}

We dismiss the image picker interface.

We grab the UIImage selected by the user from the NSDictionary returned by the
image picker and set the cityPicture variable.

We grab a reference to the thumbnail UIImageView, populate it with the chosen
image, and reload the table view so that the displayed image is updated.

Finally, in the saveCity: method, we need to add a line just before we add the
newCity to the cities array. Add the line shown in bold:

newCity.cityPicture = nil;
newCity.cityPicture = cityPicture;
[cities addObject:newCity];

This will take our new picture and serialize it into the data model for our application.

It’s time to test our application. Make sure you’ve saved your changes and click Build
and Run.

If you test the application in iPhone Simulator, you’ll notice that there
are no images in the Saved Photos folder. There is a way around this
problem. In the simulator, tap the Safari icon and drag and drop a pic-
ture from your computer (you can drag it from the Finder or iPhoto)
into the browser. You’ll notice that the URL bar displays the file path
to the image. Click and hold down the cursor over the image and a dialog
will appear allowing you to save the image to the Saved Photos folder.

Once the application has started, tap the Edit button in the navigation bar and go to
the New City view. Tapping the blue button will open the image picker, as shown in
Figure 6-20, and allow you to select an image. Once you’ve done this, the image picker
will be dismissed and you’ll return to the New City interface.

Is everything working? Not exactly; depending on how you tested the interface you
may have noticed the problem. Currently, if you enter text in the City field and then
click on the “Add a picture” button before clicking on the Description field, the text in
the City field will be lost when you return from the image picker. However, if you enter
text in the City field and then enter text in (or just click on) the Description field, the
text will still be there when you return from the image picker. Any text entered in the
Description field will remain in any case.

This is actually quite a subtle bug and is a result of the different ways in which a
UITextField and UITextView interact as first responders. We’re going to talk about the
responder chain in Chapter 8 when we deal with data handling in more detail. However,

The Image Picker View Controller | 141

www.it-ebooks.info

http://www.it-ebooks.info/

to explain this without getting into too much detail, the first responder is the object in
the application that is the current recipient of any UI events (such as a touch). The
UIWindow class sends events to the registered first responder, giving it the first chance
to handle the event. If it fails to do so, the event will be passed to the next object.

By default, the UITextField doesn’t commit any changes to its text until it is no longer
the first responder, which is where the problem comes from. While we could change
this behavior through the UITextFieldDelegate protocol, there is a simpler fix. Add the
lines shown in bold to the addPicture: method:

- (IBAction)addPicture:(id)sender {
 UITextField *nameEntry = (UITextField *)[nameCell viewWithTag:777];
 [nameEntry resignFirstResponder];

 [self presentModalViewController:pickerController animated:YES];
}

With this change, we force the UITextField to resign as first responder before we open
the image picker. This means that when the image picker is dismissed, the text we
entered before opening it will remain when we are done.

Figure 6-20. The UIImagePickerController and the New City view with a new image

142 | Chapter 6: Other View Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

Save your changes, and click on the Build and Run button in the Xcode toolbar. When
the application starts up, return to the New City view and confirm that this simple
change fixes the bug.

We’re done with the City Guide application for a while. However, we’ll be back in
Chapter 8, where I’ll fix the last remaining problem with the application and talk about
data storage. (Until then, cities you add will not be saved when you exit the application,
so don’t enter all your favorite cities just yet.)

The Image Picker View Controller | 143

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7

Connecting to the Network

The iPhone and iPod touch platforms are designed for always-on connectivity in mind.
Developers have taken advantage of this to create some innovative third-party appli-
cations. Most iPhone applications will make a network connection at some point, and
many are so fundamentally tied to web services that they need a network connection
to function.

Detecting Network Status
Before your application attempts to make a network connection, you need to know
whether you have a network available, and depending on what you want to do you
might also want to know whether the device is connected to a WiFi or cellular network.

One of the more common reasons for Apple to reject an application
submitted for review is that the application doesn’t correctly notify the
user when the application fails to access the network. Apple requires
that you detect the state of the network connection and report it to the
user when the connection is unavailable, or otherwise handle it in a
graceful manner.

Apple’s Reachability Class
Helpfully, Apple has provided some sample code to deal with detecting current network
status. The Reachability code is available at http://developer.apple.com/iphone/library/
samplecode/Reachability/.

Two different versions of the Apple Reachability code are in general
circulation. The earlier version, which appears in many web tutorials
and has been widely distributed, dates from the pre-2.0 SDK. The newer
version, released in August 2009, is much improved and supports asyn-
chronous connection monitoring. However, the interface offered by the
two versions is very different, so to avoid confusion you need to be aware
which version of the Reachability code you’re using.

145

www.it-ebooks.info

http://developer.apple.com/iphone/library/samplecode/Reachability/
http://developer.apple.com/iphone/library/samplecode/Reachability/
http://www.it-ebooks.info/

Download the Reachability.zip file from Apple, and unzip it. Open the Reachability/
Classes directory and grab the Reachability.h and Reachability.m files from the Xcode
project and copy them onto your Desktop (or any convenient location). This is the
Reachability class that we want to reuse in our projects.

To use the Reachability class in a project, you must do the following after you create
the project in Xcode:

1. Drag and drop both the header and implementation files into the Classes group in
your project, and be sure to tick the “Copy items into destination group’s folder
(if needed)” checkbox in the pop-up dialog that appears when you drop the files
into Xcode.

2. Right-click or Ctrl-click on the Frameworks group, select Add→Existing Frame-
works, and then select SystemConfiguration.framework in the Frameworks selector
pop up, as shown in Figure 7-1. The Reachability code needs this framework and
it has to be added to your projects where you use it.

Figure 7-1. Selecting SystemConfiguration.framework from the list offered by Xcode when adding a
new framework to a project

There are two ways to make use of Apple’s Reachability code: synchronously or
asynchronously.

146 | Chapter 7: Connecting to the Network

www.it-ebooks.info

http://www.it-ebooks.info/

Synchronous reachability

The synchronous case is the simpler of the two approaches; here we import the Reach-
ability.h header file into our code and then carry out a “spot-check” as to whether the
network is reachable, and whether we have a wireless or WWAN connection:

#import "Reachability.h"

... some code omitted ...

Reachability *reach = [[Reachability reachabilityForInternetConnection] retain];
NetworkStatus status = [reach currentReachabilityStatus];

or alternatively, whether a specific host is reachable:

Reachability *reach =
 [[Reachability reachabilityWithHostName: @"www.apple.com"] retain];
NetworkStatus status = [reach currentReachabilityStatus];

We can then use a simple switch statement to decode the network status. The following
code turns the status flag into an NSString, perhaps to update a UILabel in the appli-
cation interface, but of course you can trigger any action you need to (disabling parts
of your user interface, perhaps?) depending on the current network status:

- (NSString *)stringFromStatus:(NetworkStatus) status {

 NSString *string;
 switch(status) {
 case NotReachable:
 string = @"Not Reachable";
 break;
 case ReachableViaWiFi:
 string = @"Reachable via WiFi";
 break;
 case ReachableViaWWAN:
 string = @"Reachable via WWAN";
 break;
 default:
 string = @"Unknown";
 break;
 }
 return string;
}

We can easily put together a quick application to illustrate use of the Reachability code.
Open Xcode and start a new project. Choose a view-based iPhone OS application, and
when prompted, name it “NetworkMonitor”. Import the Reachability code, add the
SystemConfiguration.framework into your new project (as discussed in the preceding
section), open the NetworkMonitorAppDelegate.h interface file in the Xcode editor, and
declare the stringFromStatus: method as shown in the following code:

#import <UIKit/UIKit.h>
#import "Reachability.h"

@class NetworkMonitorViewController;

Detecting Network Status | 147

www.it-ebooks.info

http://www.it-ebooks.info/

@interface NetworkMonitorAppDelegate : NSObject <UIApplicationDelegate> {
 UIWindow *window;
 NetworkMonitorViewController *viewController;
}

@property (nonatomic, retain) IBOutlet UIWindow *window;
@property (nonatomic, retain) IBOutlet
 NetworkMonitorViewController *viewController;

- (NSString *)stringFromStatus:(NetworkStatus)status;

@end

Save your changes, and open the NetworkMonitorAppDelegate.m implementation file
in the Xcode editor and modify the applicationDidFinishLaunching: method:

- (void)applicationDidFinishLaunching:(UIApplication *)application {

 // Override point for customization after app launch
 [window addSubview:viewController.view];
 [window makeKeyAndVisible];

 Reachability *reach =
 [[Reachability reachabilityForInternetConnection] retain];
 NetworkStatus status = [reach currentReachabilityStatus];

 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@"Reachability"
 message:[self stringFromStatus: status]
 delegate:self
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [alert show];
 [alert release];
}

The final step is to add the stringWithStatus: method I showed earlier to Network-
MonitorAppDelegate.m. Save your changes and click the Build and Run button on the
Xcode toolbar to compile your code and deploy it into iPhone Simulator. You should
see something similar to Figure 7-2.

Asynchronous reachability

The asynchronous approach is (only slightly) more complicated, but using the Reacha
bility class in this way means your application can be notified of changes in the current
network status. You must first import the Reachability.h header file into your code.
After that, you need to register the class that must monitor the network as an observer
for the kReachabilityChangedNotification event:

[[NSNotificationCenter defaultCenter] addObserver: self
 selector: @selector(reachabilityChanged:)
 name: kReachabilityChangedNotification
 object: nil];

148 | Chapter 7: Connecting to the Network

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 7-2. The NetworkMonitor application in iPhone Simulator

Then you need to create a Reachability instance and start event notification:

Reachability *reach =
 [[Reachability reachabilityWithHostName: @"www.apple.com"] retain];
[reach startNotifer];

When the network reachability status changes, the Reachability instance will notify
your code by calling the reachabilityChanged: method. What you do in that method
of course very much depends on why you’re monitoring the network status in the first
place; however, the stub of such a method would look like this:

- (void) reachabilityChanged: (NSNotification *)notification {
 Reachability *reach = [notification object];
 if([reach isKindOfClass: [Reachability class]]) {
 NetworkStatus status = [reach currentReachabilityStatus];
 // Insert your code here
 }
}

The isKindOfClass: method returns a Boolean that indicates whether the receiver is
an instance of a given class. Here we check whether the Reachability object passed
as part of the notification is indeed of type Reachability.

Detecting Network Status | 149

www.it-ebooks.info

http://www.it-ebooks.info/

Using Reachability directly

The Apple Reachability class is just a friendly wrapper around the SCNetworkReacha
bility programming interface, which is part of SystemConfiguration.framework. While
I recommend using Apple’s sample code if possible, you can use the interfaces directly
if you need to do something out of the ordinary.

If you are interested in alternative approaches to checking for network
reachability, I recommend looking at the UIDevice-Reachability exten-
sions provided by Erica Sadun in The iPhone Developer’s Cookbook
(Addison-Wesley). The Reachability code is available for download
from the GitHub source repository that accompanies the book. It is
located in the 013-Networking/02-General Reachability/ folder of the
repository.

Embedding a Web Browser in Your App
The UIWebView class allows you to embed web content inside your application. This
class is the simplest but least flexible way of getting network content into your appli-
cation. A UIWebView is best used to display content. If you want to manipulate the
content programmatically, you should skip ahead a couple of sections and look at the
discussion of the NSURLConnection class. However, there are a few tricks you can play
to retrieve the displayed content from the UIWebView once it has been downloaded, and
I’ll talk about them later in the section.

A Simple Web View Controller
There are a number of cases where you might want to load a URL and display a web
page, but keep users inside your application rather than closing it and opening Safari.
If this is what you need to do, you should be using a UIWebView.

So, let’s build some code that you’ll be able to reuse in your own applications later.
The specification for this code is a view controller that we can display modally, which
will display a UIWebView with a specified web page, and can then be dismissed, returning
us to our application.

I’m going to prototype the code here, hanging it off a simple view with a button that
will pull up the modal view. However, the view controller class is reusable without
modification; just drag and drop the code out of this project and into another. This is
also a good exercise in writing reusable code.

Open Xcode and start a new project, choose a view-based iPhone OS application, and
when prompted, name it “Prototype”. The first thing we want to do is set up our main
view; this is going to consist of a single button that we’ll click to bring up the web view.
Click on the PrototypeViewController.h interface file to open it in the editor, and add

150 | Chapter 7: Connecting to the Network

www.it-ebooks.info

http://github.com/erica/iphone-3.0-cookbook-
http://www.it-ebooks.info/

a UIButton flagged as an IBOutlet and an associated method (flagged as an IBAction)
to the interface file. The added code is shown in bold:

#import <UIKit/UIKit.h>

@interface PrototypeViewController : UIViewController {
 IBOutlet UIButton *goButton;
}

-(IBAction) pushedGo:(id) sender;

@end

Now, open the PrototypeViewController.m implementation file and add a stub for the
pushedGo: method. As always, you have to remember to release the goButton in the
dealloc: method:

-(IBAction) pushedGo:(id) sender {
 // Code goes here later
}

- (void)dealloc {
 [goButton release];
 [super dealloc];
}

Next, we need to add a new view controller class to the project. This is the class we’re
going to use to manage our UIWebView. Right-click on the Classes group in the Groups
& Files pane in Xcode and select Add→New File, select the UIViewController subclass
template from the Cocoa Touch Class category, and check the “With XIB for user
interface” box. When prompted, name the new class “WebViewController”.

Three files will be created: the interface file WebViewController.h, the implementation
file WebViewController.m, and the view NIB file WebViewController.xib.

At this point, I normally rename the NIB file, removing the “Controller”
part of the filename and leaving it as WebView.xib, as I feel this is a neater
naming scheme. I also usually move it from the Classes group to the
Resources group to keep it with the other NIBs.

After creating this new view controller, we need to leave Xcode for a moment. Double-
click on the PrototypeViewController.xib file to open the NIB file in Interface Builder.
Drag and drop a round rect button (UIButton) into the view and change its text to
something appropriate; I picked “Go!”. (You can find the button in the Inputs & Values
category of the Library.)

Next, click on File’s Owner in the WebView.xib window. In the Connections Inspector
(⌘-2), connect both the goButton outlet and the pushedGo: received action to the button
that you just dropped into the view, choosing Touch Up Inside as the action; see

Embedding a Web Browser in Your App | 151

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 7-3. Make sure you save your changes to the PrototypeViewController.xib file
and close it. We’re done with the PrototypeViewController class for now.

Figure 7-3. Connecting the UIButton to File’s Owner, the PrototypeViewController

Now we need to build our web view. Double-click on WebView.xib to open the NIB
file in Interface Builder. Drag and drop a navigation bar (UINavigationBar) from
Library→Windows, Views & Bars, and position it at the top of the view. Then drag a
web view (UIWebView) from Library→Data Views into the view and resize it to fill the
remaining portion of the View window. Check the box marked Scales Page to Fit in the
Attributes Inspector (⌘-1). Finally, drag a bar button item (UIBarButton) onto the nav-
igation bar, and in the Attributes tab of the Inspector window change its identifier to
Done. Once you’re done, your view will look similar to Figure 7-4.

After saving the changes to the WebView.xib file, close it and return to Xcode. We now
need to implement the WebViewController class before we can connect the new UI to
our code.

Open the WebViewController.h interface file. We want to make this class self-contained
so that we can reuse it without any modifications. Therefore, we’re going to override
the init: function to pass in the URL when instantiating the object. Make the following
changes to the file (notice that I’ve added <UIWebViewDelegate> to the interface
declaration):

152 | Chapter 7: Connecting to the Network

www.it-ebooks.info

http://www.it-ebooks.info/

#import <UIKit/UIKit.h>

@interface WebViewController : UIViewController <UIWebViewDelegate> {
 NSURL *theURL;
 NSString *theTitle;
 IBOutlet UIWebView *webView;
 IBOutlet UINavigationItem *webTitle;

}

- (id)initWithURL:(NSURL *)url;
- (id)initWithURL:(NSURL *)url andTitle:(NSString *)string;
- (IBAction) done:(id)sender;

@end

Figure 7-4. Creating our web view in Interface Builder

In fact, to give a bit more flexibility to the class, I provided two different init: functions:
initWithURL: and initWithURL:andTitle:. There’s also a done: method flagged as an
IBAction that we can connect to our Done UIBarButtonItem when we go back into
Interface Builder.

We’ve declared an NSURL and an NSString to store the URL and view title passed to our
init methods, along with a UIWebView and a UINavigationItem flagged as IBOutlet to
connect to the UI elements we created previously in Interface Builder.

Embedding a Web Browser in Your App | 153

www.it-ebooks.info

http://www.it-ebooks.info/

Navigation Bars and Interface Builder
If you add the UINavigationBar to your modal view inside Interface Builder, as we have
done here, it is not managed by a UINavigationController. This means you cannot set
the title of the navigation bar inside your view controller using the self.title or the
self.NavigationItem.title property.

There are several ways around this problem, but one of the easier ways is to declare a
UINavigationItem IBOutlet in the view controller’s interface file, and then in Interface
Builder connect this outlet to the UINavigationItem that contains the title (you’ll need
to switch the WebView.xib window into list mode with Option-⌘-2 and expand the
navigation bar).

Once this is done, you can set the title in the navigation bar from the viewDidLoad: or
viewDidAppear: method using the title property of the instance variable pointing to
your UINavigationItem IBOutlet variable that you declared.

Now, open the WebViewController.m implementation file. We’ll start by implementing
the two initWith methods. Add the following code to the file:

- (id)initWithURL:(NSURL *)url andTitle:(NSString *)string {
 if(self = [super init]) {
 theURL = url;
 theTitle = string;
 }
 return self;
}

-(id)initWithURL:(NSURL *)url {
 return [self initWithURL:url andTitle:nil];
}

We implemented the initWithURL: method by calling the initWithURL:andTitle:
method with an empty (nil) title. Doing it this way means that if we need to change
the implementation of the initialization method later, we have to do so in only one
place.

Next, we have to load the URL into the view, and we’ll do that in the viewDidLoad:
method. Uncomment the viewDidLoad: method and add the lines shown in bold:

- (void)viewDidLoad {
 [super viewDidLoad];
 webTitle.title = theTitle;
 NSURLRequest *requestObject = [NSURLRequest requestWithURL:theURL];
 [webView loadRequest:requestObject];
}

We set the title property of the NSNavigationBarItem to the title string we passed
earlier in the initWithURL:andTitle: method.

154 | Chapter 7: Connecting to the Network

www.it-ebooks.info

http://www.it-ebooks.info/

We marshal (gather together along with the other necessary data) the URL we passed
in the initWithURL:andTitle: method to form an NSURLRequest object.

Here, we load the requested URL into the UIWebView.

Now we have to deal with what happens when the user dismisses the view by tapping
the Done button. Add the following to the file:

- (IBAction) done:(id)sender {
 [self dismissModalViewControllerAnimated:YES];
}

- (void)viewWillDisappear:(BOOL)animated {
 [super viewWillDisappear:animated];
 webView.delegate = nil;
 [webView stopLoading];
}

In the done: method, we dismiss the modal view, which will trigger the view
WillDisappear:animated: method.

In the viewWillDisappear:animated: method, we have to set the delegate class for
our UIWebView to nil. We’re about to deallocate our object, and if we don’t set the
delegate property to nil before this happens, messages sent to the nonexistent object
by the UIWebViewDelegate protocol will cause our application to crash.

We also have to stop loading from our URL because the events generated as the web
page continues to load will cause the application to crash.

Finally, we have to make sure we release our declared variables in the dealloc: method.
Add the lines shown in bold to this method:

- (void)dealloc {
 [webView release];
 [webTitle release];
 [super dealloc];
}

We’re not quite done yet. Back in the PrototypeViewController.m file we still need to
implement the pushedGo: method. Replace // Code goes here later with the code
shown in bold:

-(IBAction) pushedGo:(id)sender {
 NSURL *url = [NSURL URLWithString:@"http://www.apple.com/"];
 WebViewController *webViewController =
 [[WebViewController alloc] initWithURL:url andTitle:@"Apple"];
 [self presentModalViewController:webViewController animated:YES];
 [webViewController release];
}

We create an instance of our WebViewController using initWithURL:andTitle:.

We present the new controller modally.

Embedding a Web Browser in Your App | 155

www.it-ebooks.info

http://www.it-ebooks.info/

Remember that since we’ve used the class in the pushedGo: method, we also now need
to import the WebViewController.h header file into the PrototypeViewController. So,
go to the top of PrototypeViewController.m and add this line:

#import "WebViewController.h"

We’re done in Xcode. Now we have to go back into Interface Builder and connect the
web view to our controller code. Open the WebView.xib file in Interface Builder. Make
sure you are in List view mode (Option-⌘-2) and expand the view completely, then
click on File’s Owner. In the Connection Inspector:

1. Connect the webTitle outlet to the UINavigationItem “Navigation Item (Title)”.

2. Connect the webView outlet to the UIWebView “Web View”.

3. Connect the done: received action to the UIBarButtonItem “Bar Button Item
(Done)”.

Finally, click on the web view and connect the delegate outlet back to File’s Owner.

At this point, if you click on File’s Owner in the main NIB window and check the
Connections tab, you should see something similar to Figure 7-5.

Save the NIB and return to Xcode. Click on the Build and Run button in the Xcode
toolbar to compile and start the application in iPhone Simulator, as shown in Fig-
ure 7-6. Tap the Go! button and the Apple website should load in your view. Remember
that you’re making a network connection here, so you might have to be a bit patient
depending on the speed of your network connection.

Of course, users don’t like to be patient, and we currently don’t have a way to indicate
to them that our application is doing something they need to be patient about. This is
where the UIWebViewDelegate protocol comes in; we declared WebViewController as a
web view delegate, but so far we haven’t taken advantage of that.

The delegate protocol offers two methods: webViewDidStartLoad: and webViewDidFinish
Load:. We can use these to start and stop the network activity indicator in the iPhone’s
toolbar to indicate that we’re transferring data and the user should be patient. Add
these two methods to WebViewController.m:

- (void)webViewDidStartLoad:(UIWebView *)wv {
 [UIApplication sharedApplication].networkActivityIndicatorVisible = YES;
}

- (void)webViewDidFinishLoad:(UIWebView *)wv {
 [UIApplication sharedApplication].networkActivityIndicatorVisible = NO;
}

But what happens if our URL fails to load? Even if we checked reachability before
creating the view controller, what if we lose the network connection while the page
itself is loading? The delegate protocol also provides the webView:didFailLoad
WithError: method to inform us that something has gone wrong. Add the following to
WebViewController.m:

156 | Chapter 7: Connecting to the Network

www.it-ebooks.info

http://www.it-ebooks.info/

- (void)webView:(UIWebView *)wv didFailLoadWithError:(NSError *)error {
 [UIApplication sharedApplication].networkActivityIndicatorVisible = NO;

 NSString *errorString = [error localizedDescription];
 NSString *errorTitle =
 [NSString stringWithFormat:@"Error (%d)", error.code];

 UIAlertView *errorView = [[UIAlertView alloc]
 initWithTitle:errorTitle
 message:errorString
 delegate:self
 cancelButtonTitle:nil
 otherButtonTitles:@"OK", nil];
 [errorView show];
 [errorView autorelease];
}

Here we grab the error description and open an alert view to display the error. We
declare our view controller class to be the alert’s delegate.

Figure 7-5. The web view NIB file connected to the WebViewController

Embedding a Web Browser in Your App | 157

www.it-ebooks.info

http://www.it-ebooks.info/

Since we said our view controller class is the UIAlertView delegate, we also have to
declare the class as a UIAlertViewDelegate in the WebViewController.h interface file:

@interface WebViewController :
 UIViewController <UIWebViewDelegate, UIAlertViewDelegate> {
 ... no changes to the code inside the declaration ...
}

With this change made, we can make use of the UIAlertViewDelegate protocol back in
our implementation to dismiss the web view pane when an error is received loading
our URL. Add the following to WebViewController.m:

- (void)didPresentAlertView:(UIAlertView *)alertView {
 [self dismissModalViewControllerAnimated:YES];
}

We’re done. With these changes, the application can tell the user that it is doing some-
thing, and can handle any errors that occur when loading the URL. Click on the Build
and Run button in the Xcode toolbar to compile and start the application in iPhone
Simulator. Tap the Go! button and you should see the activity indicator spinning in the
toolbar next to the WiFi signal strength icon as the application loads Apple’s web page.
When it finishes, the spinner should stop.

Figure 7-6. The initial main view (left) and the web view (right)

158 | Chapter 7: Connecting to the Network

www.it-ebooks.info

http://www.it-ebooks.info/

Click Done, and then either turn Airport off or unplug your Ethernet cable. Now try
again, and you should get something that looks like Figure 7-7, informing you that you
no longer have an Internet connection.

Figure 7-7. The webView:didFailLoadWithError: method creates a UIAlertView and dismisses the
web view when we fail to load the URL we passed to it

At this point, you have a reusable WebViewController class and associated NIB file that
you can copy and drop directly into your own projects. You might also want to think
about improvements if you do that, of course. For instance, the only error checking we
do occurs after we attempt to load the view. Perhaps you could make use of the Reach
ability class we looked at earlier in the chapter inside the viewWillAppear: method,
before the web view is even displayed, to check the network connection. Then you can
pop up an alert view if you are unable to reach theURL (which we passed to the view
controller as part of the initWithURL: or initWithURL:andTitle: method) before the
view is displayed to the user rather than afterward.

Displaying Static HTML Files
We can use the UIWebView class to display HTML files bundled into our project. In fact,
we can add HTML documents to our project in the same way we dragged and dropped
the images into the City Guide application; see “Adding Images to Your
Projects” on page 71 in Chapter 5.

Embedding a Web Browser in Your App | 159

www.it-ebooks.info

http://www.it-ebooks.info/

Suppose we’re going to use a web view to display a help document for our application.
We could do so as follows:

NSString *filePath =
 [[NSBundle mainBundle]
 pathForResource:@"HelpDocument" ofType:@"html"];

NSData *htmlData = [NSData dataWithContentsOfFile:filePath];

if (htmlData) {
 [webView loadData:htmlData
 MIMEType:@"text/html"
 textEncodingName:@"UTF-8"
 baseURL:[NSURL URLWithString:@"http://www.babilim.co.uk"]];
}

We grab the file path to our bundled resource, create an NSData object, and pass this
to our web view.

Embedding Images in the Application Bundle
Since we can specify the base URL of our web view, we can use a trick to embed small
images directly into our application bundle by setting this base URL for our HTML
document correctly. For instance, if we have an HTML document in the NSString var-
iable htmlDocument, we could add this snippet:

NSString *filePath = [[NSBundle mainBundle] bundlePath];
NSURL *baseURL = [NSURL fileURLWithPath:filePath];
[webView loadHTMLString:htmlDocument baseURL:baseURL];

This will load the HTML document into our UIWebView. However, it will also set the
base URL to the root of the application bundle and allow us to add images (or other
content) into our application and refer to them directly in our document (or an asso-
ciated CSS file):

You should note that even if you store your images inside a folder in your Xcode project,
they will be at the root of the application bundle file when you build and deploy your
application.

Getting Data Out of a UIWebView
A UIWebView is primarily intended to display a URL, but if need be you can retrieve the
content that has been loaded into the view using the stringByEvaluatingJavaScript
FromString: method:

NSString *content =
 [webView stringByEvaluatingJavaScriptFromString:@"document.body.outerHTML"];

Here we retrieve the contents of the HTML <body> ... </body> tag.

160 | Chapter 7: Connecting to the Network

www.it-ebooks.info

http://www.it-ebooks.info/

Sending Email
The MFMailComposeViewController class provides access to the same interface used by
the Mail client to edit and send an email. The most common way to present this inter-
face is to do so modally using the presentModalViewController:animated: method, just
as we did in the preceding section to create a reusable web view class.

We can therefore reuse our Prototype application code from the preceding section to
demonstrate how the mail composer works; we’ll just drop in a class that displays the
mail interface instead of the web interface. Open the Finder and navigate to the location
where you saved the Prototype project. Right-click on the folder containing the project
files and select Duplicate; a folder called Prototype copy will be created containing a
duplicate of our project. Rename the folder Prototype2, and then open the new (du-
plicate) project inside Xcode and use the Project→Rename tool to rename the project
itself.

Next, prune back the code:

1. Open the copy of the project in Xcode and delete the WebViewController.h, Web-
ViewController.m, and WebView.xib files by right-clicking on each file in the
Groups & Files pane and selecting Delete from the pop-up menu. When prompted,
click Also Move to Trash. If you moved WebView.xib into your Resources folder
with the rest of the NIBs, look for it there.

2. Now click on the PrototypeViewController.m file to open it in the editor. Delete
the line where you import the WebViewController.h file and delete all the code in
the pushedGo: method, but not the method itself.

At this point, we have just the stub of the application, with that Go! button and asso-
ciated pushedGo: method we can use to trigger the display of our mail composer view.
So, let’s write the code to do that now.

The first thing we need to do is add the MessageUI.framework framework to the project.
As you did earlier for the SystemConfiguration.framework, right-click on the Frame-
works group and select Add→Existing Frameworks. Then select the MessageUI.frame-
work from the list presented in the framework selection pop-up window.

If you have upgraded your Xcode (and iPhone SDK) distribution in the
middle of developing a project, MessageUI.framework may not show up
in the list of frameworks presented to you by Xcode in the framework
selection pop up. If this turns out to be the case, you may be able to
resolve the problem by opening the Targets group in the Groups & Files
pane in Xcode, right-clicking on the application’s target, and selecting
Get Info. Navigate to the Build pane of the Target Info window and set
the Base SDK of your project to the SDK you currently have installed
(rather than the SDK with which you initially developed the project).

Sending Email | 161

www.it-ebooks.info

http://www.it-ebooks.info/

We’re going to present our mail composer view when the Go! button is clicked using
our pushedGo: method. However, before we do, we need to see if the device is even
configured to send email, using the canSendMail: class method. If it isn’t, we need to
inform the user that the device isn’t able to send mail. When writing a real application
that relies on email being available, you might want to do this check when the appli-
cation starts inside your application delegate, and then either inform the user that there
is a problem or disable the parts of your application that depend on it being able to
send mail. Add the following code to the pushedGo: method in PrototypeViewControl-
ler.m:

-(IBAction) pushedGo:(id)sender {
 if (![MFMailComposeViewController canSendMail]) {
 NSString *errorTitle = @"Error";
 NSString *errorString =
 @"This device is not configured to send email.";
 UIAlertView *errorView = [[UIAlertView alloc] initWithTitle:errorTitle
 message:errorString
 delegate:self
 cancelButtonTitle:nil
 otherButtonTitles:@"OK", nil];
 [errorView show];
 [errorView release];
 } else {
 MFMailComposeViewController *mailView =
 [[[MFMailComposeViewController alloc] init] autorelease];
 mailView.mailComposeDelegate = self;
 [mailView setSubject:@"Test"];
 [mailView setMessageBody:@"This is a test message" isHTML:NO];
 [self presentModalViewController:mailView animated:YES];
 }
}

Here we check to see if the device is capable of sending mail. If it isn’t, we present
a UIAlertView to inform the user.

We allocate and initialize an instance of the mail composer view controller.

We set the delegate for the controller to be this class, which implies that we have to
implement the delegate protocol for the mail composer view controller.

After setting the subject and the message body, we present the view controller
modally.

Unlike the web view we implemented earlier in the chapter, the mail composer view
won’t dismiss itself when the user clicks the Send or Cancel button. We need to know
when it is dismissed by the user; for that to happen we must implement the MFMailCom
poseViewControllerDelegate protocol. We therefore need to import the framework
headers into the PrototypeViewController.h interface file, which we do by importing
the MessageUI.h header file:

#import <MessageUI/MessageUI.h>

162 | Chapter 7: Connecting to the Network

www.it-ebooks.info

http://www.it-ebooks.info/

We also have to declare our PrototypeViewController as a delegate class for the mail
view by changing the declaration in PrototypeViewController.h, as shown here:

@interface PrototypeViewController : UIViewController
 <MFMailComposeViewControllerDelegate> {
 ... no changes to the code in here ...
}

The delegate protocol implements only one method, which dismisses the view
controller and handles any errors: the mailComposeController:didFinish
WithResult:error: method. Let’s implement that now as part of our PrototypeViewCon
troller class. Add the following method to PrototypeViewController.m:

-(void)mailComposeController:(MFMailComposeViewController *)controller
 didFinishWithResult:(MFMailComposeResult)result error:(NSError *)error {
 if (error) {
 NSString *errorTitle = @"Mail Error";
 NSString *errorDescription = [error localizedDescription];
 UIAlertView *errorView = [[UIAlertView alloc]
 initWithTitle:errorTitle
 message:errorDescription
 delegate:self
 cancelButtonTitle:nil
 otherButtonTitles:@"OK", nil];
 [errorView show];
 [errorView release];

 } else {
 // Add code here to handle the MFMailComposeResult
 }

 [controller dismissModalViewControllerAnimated:YES];
}

If the controller returns an error, we use a UIAlertView to inform the user.

If no error is returned, we should handle the MFMailComposeResult instead.

In either case, we need to dismiss the controller’s view and release the controller.

Before we discuss how to handle the MFMailComposeResult, let’s test our code. Click the
Build and Go button on the Xcode toolbar to compile and start the application in iPhone
Simulator. Once the application opens, click the Go! button. If all goes well, you should
see something very similar to Figure 7-8.

Now that the application is working, let’s handle that MFMailComposeResult. The sim-
plest way to illustrate how to handle the result is to add a label to the PrototypeView
Controller NIB file, and display the result returned by the mail composer view there.

The first thing you need to do is to add a UILabel to the PrototypeViewController.h
interface file and declare it as an IBOutlet. Add the line shown in bold:

#import <UIKit/UIKit.h>
#import <MessageUI/MessageUI.h>

Sending Email | 163

www.it-ebooks.info

http://www.it-ebooks.info/

@interface PrototypeViewController : UIViewController
<MFMailComposeViewControllerDelegate> {
 IBOutlet UIButton *goButton;
 IBOutlet UILabel *resultLabel;
}

-(IBAction) pushedGo:(id)sender;

@end

Figure 7-8. The MFMailMailComposeViewController

Remember that now we’ve declared the label variable, so we also need to release it
inside the dealloc: method. Add the following to the dealloc: method in Prototype-
ViewController.m:

[resultLabel release];

We also need to open the PrototypeViewController.xib file in Interface Builder and add
the label. Open the NIB file and then drag and drop a label (UILabel) from the Library
window onto the view. Now right-click on File’s Owner and connect the resultLabel
outlet to the new UILabel. Make sure you save your changes to the NIB file, and then
return to Xcode.

164 | Chapter 7: Connecting to the Network

www.it-ebooks.info

http://www.it-ebooks.info/

Now we can use the label to display the results. Inside the mail composer delegate
method, replace the line that reads // Add code here to handle the MFMailCompo
seResult with the following code:

NSString *string;
switch (result) {
 case MFMailComposeResultSent:
 string = @"Mail sent.";
 break;
 case MFMailComposeResultSaved:
 string = @"Mail saved.";
 break;
 case MFMailComposeResultCancelled:
 string = @"Mail cancelled.";
 break;
 case MFMailComposeResultFailed:
 string = @"Mail failed.";
 break;
 default:
 string = @"Unknown";
 break;
}
resultLabel.text = string;

The switch statement we just added enumerates the possible results, and then sets the
label string to a human-readable result. We’re done. If you build the application again
and send an email from the composer view, you should see something very much like
Figure 7-9.

Attaching an Image to a Mail Message
You can attach an image to your mail message by using the addAttachmentData:mime
Type:Filename: method. This should be called before displaying the mail composer
interface, directly after the call to the setMessageBody:isHTML: method. You should not
call this method after displaying the composer interface to the user.

If necessary, you can change the image type using the UIImageJPEGRepresentation() or
UIImagePNGRepresentation() UIKit function, as shown here:

UIImage *image = [UIImage imageNamed:@"Attachment.png"];
NSData *data = UIImageJPEGRepresentation(image, 1.0);
[mailView addAttachmentData:data mimeType:@"image/jpeg"
 fileName:@"Picture.jpeg"];

This example will look for Attachment.png at the root of the application bundle (to put
a file there, drag it into the top level of the Groups & Files pane), convert it to a JPEG,
and attach it under the filename Picture.jpeg.

Sending Email | 165

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Data from the Internet
If you want to retrieve data from the Internet and process it programmatically, rather
than just display it in a view, you should use the NSURLConnection class. While it’s more
complicated than the UIWebView we looked at earlier in the chapter, it’s inherently more
flexible.

The NSURLConnection class can make both synchronous and asynchronous requests to
download the contents of a URL, and the associated delegate methods provide feedback
and control for asynchronous requests.

Synchronous Requests
The easiest, but not the best, way to use the NSURLConnection class is to make a syn-
chronous request for data:

NSString *url = @"http://www.apple.com";
NSURLRequest *request =
 [NSURLRequest requestWithURL:[NSURL URLWithString:url]];

NSURLResponse *response = nil;
NSError *error = nil;

Figure 7-9. We successfully sent the mail message

166 | Chapter 7: Connecting to the Network

www.it-ebooks.info

http://www.it-ebooks.info/

NSData *content = [NSURLConnection sendSynchronousRequest:request
 returningResponse:&response error:&error];

NSString *string = [[NSString alloc] initWithData:content
 encoding:NSUTF8StringEncoding];
NSLog(@"response: %@", string);

sendSynchronousRequest: is a convenience method built on top of the asynchronous
request code. It’s important to note that if you use this method the calling thread will
block until the data is loaded or the request times out. If the calling thread is the main
thread of your application, your application will freeze while the request is being made.
This is generally considered not a good thing from a UI perspective; I strongly encourage
you to use the asynchronous connection and associated delegate methods.

Asynchronous Requests
Most of the time when you use the NSURLConnection class, you’ll make asynchronous
requests this way:

NSString *string = [NSString stringWithFormat:@"http://www.apple.com/];
NSURL *url = [[NSURL URLWithString:string] retain];
NSURLRequest *request = [NSURLRequest requestWithURL:url];
[[NSURLConnection alloc]
 initWithRequest:request delegate:self];

Here we make the asynchronous call and set the delegate class to be self.

For this to work, you need to implement the following methods at a minimum. We’ll
take a closer look at NSURLConnection in “Using Web Services” on page 168:

- (NSURLRequest *)connection:(NSURLConnection *)connection
 willSendRequest:(NSURLRequest *)request
 redirectResponse:(NSURLResponse *)redirectResponse
{
 return request;
}

- (void)connection:(NSURLConnection *)connection
 didReceiveResponse:(NSURLResponse *)response
{
 [responseData setLength:0];
}

- (void)connection:(NSURLConnection *)connection
 didReceiveData:(NSData *)data
{
 [responseData appendData:data];
}

- (void)connection:(NSURLConnection *)
 connection didFailWithError:(NSError *)error
{
 ... implementation code would go here ...
}

Getting Data from the Internet | 167

www.it-ebooks.info

http://www.it-ebooks.info/

- (void)connectionDidFinishLoading:(NSURLConnection *)connection {
 ... implementation code would go here ...
}

You need to declare an NSMutableData variable (responseData in this example) in the
interface file of your delegate class to hold the response data. As a stylistic choice,
you may prefer to alloc and init your NSMutableData object, rather than calling the
setLength: method as we have done here.

This appends the data as it is received to the response data variable. There may be
multiple calls to this delegate method as data comes in from the response.

This method is called if an error occurs during the connection.

This method is called if the connection completes successfully.

Using Web Services
With the (re)emergence of REpresentational State Transfer (REST) as the dominant
paradigm for modern web service architectures, chiefly championed by emerging Web
2.0 companies and platforms, the number of available services has grown significantly
over the past few years.

If you are interested in learning more about RESTful web services, I
recommend the book RESTful Web Services by Leonard Richardson and
Sam Ruby (O’Reilly).

The Google Weather Service

To illustrate the NSURLConnection class, we’re going to look at one of these RESTful
services, the (mostly undocumented, as far as I can tell) Google Weather Service. A
request to the Google Weather API of the form http://www.google.com/ig/api?
weather=QUERY_STRING will return forecasts with temperatures in Fahrenheit; the same
request to www.google.co.uk will return a forecast with temperatures in Centigrade.

While the Google Weather Service is a simple little service that has been
around for some time in its current form, there is very little documen-
tation surrounding it. As such, Google may not regard it as an “officially
supported” API and the service may be subject to change without much
notice.

So, for instance, if we made a request of the Google Weather API for the current con-
ditions and forecast in London, the request would look like http://www.google.com/ig/
api?weather=London,UK. If we do that, the service will return an XML document con-
taining the current and forecasted conditions:

168 | Chapter 7: Connecting to the Network

www.it-ebooks.info

http://oreilly.com/catalog/9780596529260/
http://www.google.co.uk
http://www.google.com/ig/api?weather=London,UK
http://www.google.com/ig/api?weather=London,UK
http://www.it-ebooks.info/

<?xml version="1.0"?>
<xml_api_reply version="1">
 <weather module_id="0" tab_id="0"
 mobile_row="0"
 mobile_zipped="1"
 row="0"
 section="0" >
 <forecast_information>
 <city data="London, England"/>
 <postal_code data="London,UK"/>
 <latitude_e6 data=""/>
 <longitude_e6 data=""/>
 <forecast_date data="2009-08-29"/>
 <current_date_time data="2009-08-29 17:50:00 +0000"/>
 <unit_system data="US"/>
 </forecast_information>

 <current_conditions>
 <condition data="Clear"/>
 <temp_f data="64"/>
 <temp_c data="18"/>
 <humidity data="Humidity: 40%"/>
 <icon data="/ig/images/weather/sunny.gif"/>
 <wind_condition data="Wind: W at 17 mph"/>
 </current_conditions>

 <forecast_conditions>
 <day_of_week data="Sat"/>
 <low data="55"/>
 <high data="71"/>
 <icon data="/ig/images/weather/chance_of_rain.gif"/>
 <condition data="Chance of Rain"/>
 </forecast_conditions>
 <forecast_conditions>
 <day_of_week data="Sun"/>
 <low data="64"/>
 <high data="69"/>
 <icon data="/ig/images/weather/chance_of_rain.gif"/>
 <condition data="Chance of Rain"/>
 </forecast_conditions>
 <forecast_conditions>
 <day_of_week data="Mon"/>
 <low data="62"/>
 <high data="77"/>
 <icon data="/ig/images/weather/chance_of_rain.gif"/>
 <condition data="Chance of Rain"/>
 </forecast_conditions>
 <forecast_conditions>
 <day_of_week data="Tue"/>
 <low data="59"/>
 <high data="73"/>
 <icon data="/ig/images/weather/chance_of_rain.gif"/>
 <condition data="Chance of Rain"/>
 </forecast_conditions>

Getting Data from the Internet | 169

www.it-ebooks.info

http://www.it-ebooks.info/

 </weather>
</xml_api_reply>

As far as I can tell, this is unimplemented, and Google does not do reverse geocoding
to populate the latitude and longitude fields of the XML document with the values
for the town or city concerned.

If we make a request about a nonexistent location—for instance, http://www.google
.com/ig/api?weather=Foo—we’ll get the following (rather unhelpful) XML error docu-
ment returned:

<?xml version="1.0"?>
<xml_api_reply version="1">
 <weather module_id="0" tab_id="0" mobile_row="0"
 mobile_zipped="1" row="0" section="0" >
 <problem_cause data=""/>
 </weather>
</xml_api_reply>

A far as I can tell this is unimplemented, and Google doesn’t populate this field.

Building an application

Much like Apple’s own Weather application, the application we’re going to wrap
around the Google Weather Service will be a utility application. So, open Xcode and
start a new project. Select the Utility Application template from the iPhone OS category,
and name the project “Weather” when prompted for a filename.

The UI for this application will be pretty complicated, and will have a
lot more elements than interfaces we’ve looked at before. So, I’ll briefly
mention an alternative. I could easily have implemented the Weather
application as a table view; in fact, programmatically this is probably
the easiest way, but it’s not the prettiest.

Pretty is important, both to people developing applications for Apple
products and to the typical customer base. If you intend to sell your
application on the App Store, you should think seriously about how
your application looks. First impressions are important, and with so
many applications available, both the UI and the application’s icon are
tools you can use to make your application stand out from the others.

While we’re going to be spending some time putting together the interface for the
application, that isn’t the main focus of this chapter. However, most of the time you’ll
be using the NSURLConnection class asynchronously, so it’s important for you to pay
attention to the way it fits into the UI and your application’s overall structure.

First we need to add a number of IBOutlets to our MainViewController.h interface file.
We’re going to populate our GUI by querying the Google Weather Service and then
parsing the XML we get back. If you compare the following to the XML file shown

170 | Chapter 7: Connecting to the Network

www.it-ebooks.info

http://www.google.com/ig/api?weather=Foo
http://www.google.com/ig/api?weather=Foo
http://www.it-ebooks.info/

earlier, you should see a more or less one-to-one correspondence between XML ele-
ments and UI elements:

#import "FlipsideViewController.h"

@interface MainViewController : UIViewController
 <FlipsideViewControllerDelegate> {

 IBOutlet UIActivityIndicatorView *loadingActivityIndicator;

 IBOutlet UILabel *nameLabel;
 IBOutlet UILabel *dateLabel;

 IBOutlet UIImageView *nowImage;
 IBOutlet UILabel *nowTempLabel;
 IBOutlet UILabel *nowHumidityLabel;
 IBOutlet UILabel *nowWindLabel;
 IBOutlet UILabel *nowConditionLabel;

 IBOutlet UILabel *dayOneLabel;
 IBOutlet UIImageView *dayOneImage;
 IBOutlet UILabel *dayOneTempLabel;
 IBOutlet UILabel *dayOneChanceLabel;

 IBOutlet UILabel *dayTwoLabel;
 IBOutlet UIImageView *dayTwoImage;
 IBOutlet UILabel *dayTwoTempLabel;
 IBOutlet UILabel *dayTwoChanceLabel;

 IBOutlet UILabel *dayThreeLabel;
 IBOutlet UIImageView *dayThreeImage;
 IBOutlet UILabel *dayThreeTempLabel;
 IBOutlet UILabel *dayThreeChanceLabel;

 IBOutlet UILabel *dayFourLabel;
 IBOutlet UIImageView *dayFourImage;
 IBOutlet UILabel *dayFourTempLabel;
 IBOutlet UILabel *dayFourChanceLabel;

 IBOutlet UIButton *refreshButton;

}

- (IBAction)showInfo;
- (IBAction)refreshView:(id) sender;
- (void)updateView;

@end

This method is called when the user taps the Refresh button. It starts the loading
activity indicator spinning, and makes the call to query the Google Weather Service.

We’re going to use this function as a callback when we have successfully retrieved
the XML document from the Google Weather Service. It will update the current
view.

Getting Data from the Internet | 171

www.it-ebooks.info

http://www.it-ebooks.info/

Now let’s open MainView.xib in Interface Builder and put together the UI. I’m not
going to walk you through the steps for building the interface this time. You’ve built
enough UIs by this point that you should be familiar with how to go about it. Look at
Figure 7-10 to see my final interface. You need to place 35 UI elements: 28 labels
(UILabel), 5 images (UIImageView), 1 activity indicator (UIActivityIndicatorView), and
1 button (UIButton). However, don’t be put off; it’s really not going to take as long as
you think it will.

Remember: to change the font color, minimum size, and other settings,
use the Attribute Inspector (⌘-1). You can change the attributes of sev-
eral elements at once by dragging to select them, and then using the
Attribute Inspector.

Figure 7-10. Building the UI for the main view

172 | Chapter 7: Connecting to the Network

www.it-ebooks.info

http://www.it-ebooks.info/

There are a few points to note:

• Each UIImage element must be resized to 40×40 pixels, the size of the GIF weather
icons provided by the Google Weather Service.

• I set the style of the UIActivityIndicatorViewer to Large White in the Attributes
Inspector and ticked the Hide When Stopped checkbox. We’ll use this indicator
to show network or other activity.

• I added a custom PNG icon for the Refresh button to the project, setting the
UIButton type to Custom and the image to point at my refresh icon (you will need
to drag your icon into your Xcode project before it will be available as a custom
image). I resized the Refresh button to be the same size as the Info button provided
by the template, setting the View Mode to “Scale to Fill” in the Attributes tab of
the Inspector window.

• When connecting the UIButtons to the received actions—for example, when drag-
ging the refreshView: action to the Refresh button—choose Touch Up Inside from
the drop-down menu of events that Interface Builder will present to you when you
make the connection.

With this number of UI elements to play with, it’s going to be easy to get confused.
What’s more, we are not going to connect all of the labels to our code, as some of them
aren’t going to be updated (e.g., section headers and the “Temp:”, “Humidity:”, and
“Wind:” labels).

So, for the elements you will connect to an IBOutlet, use the Identity Inspector’s (⌘-4)
Interface Builder Identity section to change the Name attribute of the element to be the
same as the variable in the MainViewController interface file. Figure 7-11 shows the
assignments.

While this doesn’t make it easier to connect the outlets to the UI elements, it does make
it easier to check whether we’ve made an incorrect connection. If you click on File’s
Owner and switch to the Connections tab of the Inspector window, as Figure 7-12
shows, you can quickly check that each outlet is connected to the correct UI element
since the name on each side of the connection should be the same.

Although we’ve written the interface for the view controller and built and connected
our view to the interface, we haven’t implemented it yet. Let’s hold off on that until
we’ve built our data model.

Getting Data from the Internet | 173

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 7-11. Associating names and variables with individual UI elements

Figure 7-12. Connecting the IBOutlets declared in the MainViewController.h file to the appropriate
UI elements

174 | Chapter 7: Connecting to the Network

www.it-ebooks.info

http://www.it-ebooks.info/

Our model class needs to query the weather service, parse the response, and populate
the data model. Right-click on the Other Sources group in the Groups & Files pane in
Xcode and select Add→New File, select the Objective-C class from the iPhone OS Cocoa
Touch category, and select NSObject from the “Subclass of” pop up. Click Next. Name
the new class WeatherForecast when prompted, and open the WeatherForecast.h
interface file in the Xcode editor. Like our UI, the interface file reflects the structure of
the XML document we retrieved from the Google Weather Service. Add the lines shown
in bold to the file:

#import <Foundation/Foundation.h>

@class MainViewController;

@interface WeatherForecast : NSObject {

 // Parent View Controller
 MainViewController *viewController;

 // Google Weather Service
 NSMutableData *responseData;
 NSURL *theURL;

 // Information
 NSString *location;
 NSString *date;

 // Current Conditions
 UIImage *icon;
 NSString *temp;
 NSString *humidity;
 NSString *wind;
 NSString *condition;

 // Forecast Conditions
 NSMutableArray *days;
 NSMutableArray *icons;
 NSMutableArray *temps;
 NSMutableArray *conditions;

}

@property (nonatomic, retain) NSString *location;
@property (nonatomic, retain) NSString *date;

@property (nonatomic, retain) UIImage *icon;
@property (nonatomic, retain) NSString *temp;
@property (nonatomic, retain) NSString *humidity;
@property (nonatomic, retain) NSString *wind;
@property (nonatomic, retain) NSString *condition;

@property (nonatomic, retain) NSMutableArray *days;
@property (nonatomic, retain) NSMutableArray *icons;
@property (nonatomic, retain) NSMutableArray *temps;
@property (nonatomic, retain) NSMutableArray *conditions;

Getting Data from the Internet | 175

www.it-ebooks.info

http://www.it-ebooks.info/

- (void)queryService:(NSString *)city
 withParent:(UIViewController *)controller;

@end

This is the variable used to hold the parent view controller. We’re going to pass this
in to the Forecast object when we call the queryService:withParent method.

These are the variables used by the NSURLConnection class during its asynchronous
request.

These are the variables to hold the data from the <forecast_information> XML
elements.

These are the variables to hold the data from the <current_conditions> XML
elements.

These are the arrays to hold the data from the four <forecast_conditions> XML
elements.

This is the method we’re going to use to trigger the asynchronous NSURLConnection
request. We pass as arguments the name of the city we’re interested in and the parent
view controller. This allows us to substitute the city name into a partially formed
REST request to the Google Weather Service.

Now open the implementation file (WeatherForecast.m) in the Xcode editor. We need
to synthesize our properties and write our queryService:withParent: method that will
start the asynchronous NSURLConnection process. Add the lines shown in bold to this file:

#import "WeatherForecast.h"
#import "MainViewController.h"

@implementation WeatherForecast

@synthesize location;
@synthesize date;

@synthesize icon;
@synthesize temp;
@synthesize humidity;
@synthesize wind;
@synthesize condition;

@synthesize days;
@synthesize icons;
@synthesize temps;
@synthesize conditions;

#pragma mark Instance Methods

- (void)queryService:(NSString *)city
 withParent:(UIViewController *)controller

176 | Chapter 7: Connecting to the Network

www.it-ebooks.info

http://www.it-ebooks.info/

{
 viewController = (MainViewController *)controller;
 responseData = [[NSMutableData data] retain];

 NSString *url = [NSString
 stringWithFormat:@"http://www.google.com/ig/api?weather=%@",
 city];
 theURL = [[NSURL URLWithString:url] retain];
 NSURLRequest *request = [NSURLRequest requestWithURL:theURL];
 [[NSURLConnection alloc] initWithRequest:request delegate:self];

}

-(void)dealloc {
 [viewController release];
 [responseData release];
 [theURL release];
 [location release];
 [date release];
 [icon release];
 [temp release];
 [humidity release];
 [wind release];
 [condition release];
 [days release];
 [icons release];
 [temps release];
 [conditions release];
 [super dealloc];
}

@end

This builds the URL from the base URL and the city string that was passed to the
queryService:withParent: method.

This builds the NSURLRequest from the URL string.

This makes the call to the Google Weather Service using an asynchronous call to
NSURLConnection.

We declared our WeatherForecast class as the delegate for the NSURLConnection class.
Now we need to add the necessary delegate methods. For now let’s just implement the
delegate methods; we’ll get around to parsing the response later. Add the following
lines to WeatherForecast.m just before the @end directive:

#pragma mark NSURLConnection Delegate Methods

- (NSURLRequest *)connection:(NSURLConnection *)connection
 willSendRequest:(NSURLRequest *)request
 redirectResponse:(NSURLResponse *)redirectResponse
{
 [theURL autorelease];
 theURL = [[request URL] retain];
 return request;

Getting Data from the Internet | 177

www.it-ebooks.info

http://www.it-ebooks.info/

}

- (void)connection:(NSURLConnection *)connection
 didReceiveResponse:(NSURLResponse *)response
{
 [responseData setLength:0];
}

- (void)connection:(NSURLConnection *)connection
 didReceiveData:(NSData *)data
{
 [responseData appendData:data];
}

- (void)connection:(NSURLConnection *)connection
 didFailWithError:(NSError *)error
{

}

- (void)connectionDidFinishLoading:(NSURLConnection *)connection {

 NSString *content = [[NSString alloc]
 initWithBytes:[responseData bytes]
 length:[responseData length]
 encoding:NSUTF8StringEncoding];
 NSLog(@"Data = %@", content);

 // Insert code to parse the content here

 [viewController updateView];
}

This converts the binary response data into an NSString object.

Here we print the response to the console log.

This is where we call the updateView: method in our parent view controller to take
the parsed response and display it in the view.

We’re going to use the application delegate to create the WeatherForecast object and
to pass it to our MainViewController object. Add the lines shown in bold to Weather-
AppDelegate.m:

- (void)applicationDidFinishLaunching:(UIApplication *)application {

 MainViewController *aController =
 [[MainViewController alloc] initWithNibName:@"MainView" bundle:nil];
 self.mainViewController = aController;
 [aController release];

 WeatherForecast *forecast = [[WeatherForecast alloc] init];
 self.mainViewController.forecast = forecast;
 [forecast release];

 mainViewController.view.frame = [UIScreen mainScreen].applicationFrame;

178 | Chapter 7: Connecting to the Network

www.it-ebooks.info

http://www.it-ebooks.info/

 [window addSubview:[mainViewController view]];
 [window makeKeyAndVisible];
}

We’re creating an instance of this class, which we’re going to store inside the app
delegate. You’ll need to also add #import "WeatherForecast.h" to the top of Weath-
erAppDelegate.m.

We pass the forecast object to the view controller, and then release it in the app
delegate. There is no need to store an instance here, as we won’t be using it from the
delegate.

We have the view, model, and interface for the view controller. Now we know how the
model works, and how we’re going to push it into the view controller. So, let’s imple-
ment the controller and tie up those loose ends. Add the following code to MainView-
Controller.m:

- (void)viewDidLoad {
 [super viewDidLoad];
 [self refreshView:self];
}

- (IBAction)refreshView:(id)sender {
 [loadingActivityIndicator startAnimating];
 [forecast queryService:@"London,UK" withParent:self];

}

- (void)updateView {

 // Add code to update view here

 [loadingActivityIndicator stopAnimating];

}

This is called when the view loads. This calls the viewDidLoad: method in the
superclass and then calls the refreshView: method.

This method is called when the Refresh button is tapped, and also from the view
DidLoad: method. This starts the UIActivityViewIndicator spinning and then calls
the queryService:withParent: method in the WeatherForecast object.

This method is called from the WeatherForecast object when it finishes loading the
XML from the remote service. This method will contain the code to update the view
using the newly populated WeatherForecast object. For now all it does is stop the
UIActivityView from spinning and hides it.

Additionally, we also need to make sure we do the following:

1. Import the WeatherForecast.h interface file inside MainViewController.h.

2. Declare the forecast, mark it as a property, and synthesize it.

Getting Data from the Internet | 179

www.it-ebooks.info

http://www.it-ebooks.info/

3. Release all of the variables we declared in the class’s interface file in MainView-
Controller.m’s dealloc: method.

To do this, add the following line to the top of MainViewController.h:

#import "WeatherForecast.h"

Next, make the changes shown in bold to the end of MainViewController.h:

 IBOutlet UIButton *refreshButton;
 WeatherForecast *forecast;
}

- (IBAction)showInfo;
- (IBAction)refreshView:(id) sender;
- (void)updateView;

@property (nonatomic, retain) WeatherForecast *forecast;

@end

Then make the change shown in bold to the top of MainViewController.h:

#import "MainViewController.h"
#import "MainView.h"

@implementation MainViewController

@synthesize forecast;

Finally, add the lines shown in bold to MainViewController.m’s dealloc: method:

- (void)dealloc {

 [loadingActivityIndicator dealloc];

 [nameLabel dealloc];
 [dateLabel dealloc];

 [nowImage dealloc];
 [nowTempLabel dealloc];
 [nowHumidityLabel dealloc];
 [nowWindLabel dealloc];
 [nowConditionLabel dealloc];

 [dayOneLabel dealloc];
 [dayOneImage dealloc];
 [dayOneTempLabel dealloc];
 [dayOneChanceLabel dealloc];

 [dayTwoLabel dealloc];
 [dayTwoImage dealloc];
 [dayTwoTempLabel dealloc];
 [dayTwoChanceLabel dealloc];

 [dayThreeLabel dealloc];
 [dayThreeImage dealloc];

180 | Chapter 7: Connecting to the Network

www.it-ebooks.info

http://www.it-ebooks.info/

 [dayThreeTempLabel dealloc];
 [dayThreeChanceLabel dealloc];

 [dayFourLabel dealloc];
 [dayFourImage dealloc];
 [dayFourTempLabel dealloc];
 [dayFourChanceLabel dealloc];

 [refreshButton dealloc];
 [forecast dealloc];

 [super dealloc];
}

This is a good point to pause, take stock, and test the application. Click the Build and
Run button in the Xcode toolbar. When the application opens you should see the
UIActivityIndicator briefly appear in the top-lefthand corner of the view, and then
disappear when the WeatherForecast object finishes loading the XML document from
the Google Weather Service.

If you go to the Xcode Console, by selecting Run→Console from the Xcode menu bar,
you should see something very much like Figure 7-13. This is the XML document
retrieved from the weather service.

Figure 7-13. The Xcode Console window showing the XML retrieved from the Google Weather Service

Getting Data from the Internet | 181

www.it-ebooks.info

http://www.it-ebooks.info/

At this point, all that is left to implement is the XML parsing code inside the Weather
Forecast’s connectionDidFinishLoading: method, and the code to take the data model
from the forecast object and display it in the view inside the MainViewController’s
updateView: method.

Parsing the XML document

We’re going to talk in detail about parsing data in the next chapter. This chapter is
about networking, so I’m not going to discuss in depth how to parse the returned XML
document here. If you’re familiar with DOM-based XML parsers, the following should
be familiar. If not, hang on until the next chapter.

Making use of the NSXMLDocument class is the normal method for tree-
based parsing of XML files on the Mac. However, despite being available
in iPhone Simulator, this class is not available on the device itself.

However, for simple files, such as those returned by the Google Weather Service, I’ve
never been a big fan of event-driven parsing. Since the NSXMLDocument class is not avail-
able on the iPhone, I generally use the libxml2 library directly, via Matt Gallagher’s
excellent XPath wrappers for the library.

For more information about the XPath wrappers for the libxml2 library, see Matt’s blog
post.

Using the XPath Wrappers
Download the wrappers from http://cocoawithlove.googlepages.com/XPathQuery.zip.
Next, unzip the file and drag the XPathQuery.h and XPathQuery.m files into your
project, remembering to tick the “Copy items into destination group’s folder” check-
box. This will add the interface and implementation files for the wrappers to the project.

To use these wrappers, you need to add the libxml2.dylib library to the project. How-
ever, adding the libxml2 library underlying these wrappers is slightly more involved
than adding a normal framework:

1. Double-click on the Weather project icon in the Groups & Files pane in Xcode
and go to the Build tab of the Project Info window.

2. Click on the Show drop-down menu and choose All Settings.

3. Go to the Search Paths subsection in this window, and in the Header Search Paths
field double-click on the entry field.

4. Click the + button and add ${SDKROOT}/usr/include/libxml2 to the paths, as
shown in Figure 7-14. Then click OK.

5. Then in the Linking subsection of this window, double-click on the Other Linker
Flags field and click +. Add -lxml2 to the flags and then click OK.

182 | Chapter 7: Connecting to the Network

www.it-ebooks.info

http://cocoawithlove.com/2008/10/using-libxml2-for-parsing-and-xpath.html
http://cocoawithlove.com/2008/10/using-libxml2-for-parsing-and-xpath.html
http://cocoawithlove.googlepages.com/XPathQuery.zip
http://www.it-ebooks.info/

Figure 7-14. Adding the libxml2.dylib library in the Project Info window

Once we’ve done that, we can open the WeatherForecast.m implementation file and
import the XPathQuery.h interface file. Add the following line to the top of Weather-
Forecast.m:

#import "XPathQuery.h"

After importing the interface file, we now have everything in place to write our connec
tionDidFinishLoading: method, using the XPath query language and libxml2 to parse
the XML document returned by the Google Weather Service. My intention here is not
to teach you XPath, as several good books are available on that topic. However, if you
examine the xpathQueryString variables in each XPath query, you will see how the data
model maps onto the original XML document returned by the weather service. Here is
the new connectionDidFinishLoading: method along with two methods (fetchCon
tent: and populateArray:fromNodes:) to take care of some repetitive tasks:

// Retrieves the content of an XML node, such as the temperature, wind,
// or humidity in the weather report.
//

Getting Data from the Internet | 183

www.it-ebooks.info

http://www.it-ebooks.info/

- (NSString *)fetchContent:(NSArray *)nodes {
 NSString *result = @"";
 for (NSDictionary *node in nodes) {
 for (id key in node) {
 if([key isEqualToString:@"nodeContent"]) {
 result = [node objectForKey:key];
 }
 }
 }
 return result;
}

// For nodes that contain more than one value we are interested in,
// this method fills an NSMutableArray with the values it finds.
// For example, the forecast returns four days, so there will be
// an array with four day names, an array with four forecast icons,
// and so forth.
//
- (void) populateArray:(NSMutableArray *)array fromNodes:(NSArray*)nodes {
 for (NSDictionary *node in nodes) {
 for (id key in node) {
 if([key isEqualToString:@"nodeContent"]) {
 [array addObject:[node objectForKey:key]];
 }
 }
 }
}

- (void)connectionDidFinishLoading:(NSURLConnection *)connection {

 days = [[NSMutableArray alloc] init];
 icons = [[NSMutableArray alloc] init];
 temps = [[NSMutableArray alloc] init];
 conditions = [[NSMutableArray alloc] init];

 NSString *xpathQueryString;
 NSArray *nodes;

 // Forecast Information //

 // Populate the location (an NSString object)
 //
 xpathQueryString = @"//forecast_information/city/@data";
 nodes = PerformXMLXPathQuery(responseData, xpathQueryString);
 location = [self fetchContent:nodes];
 NSLog(@"location = %@", location);

 // Populate the date (an NSString object)
 //
 xpathQueryString = @"//forecast_information/forecast_date/@data";
 nodes = PerformXMLXPathQuery(responseData, xpathQueryString);
 date = [self fetchContent:nodes];
 NSLog(@"date = %@", date);

 // Current Conditions //

184 | Chapter 7: Connecting to the Network

www.it-ebooks.info

http://www.it-ebooks.info/

 // Populate the current day's weather icon (a UIImage object)
 //
 xpathQueryString = @"//current_conditions/icon/@data";
 nodes = PerformXMLXPathQuery(responseData, xpathQueryString);
 for (NSDictionary *node in nodes) {
 for (id key in node) {
 if([key isEqualToString:@"nodeContent"]) {
 icon = [NSString
 stringWithFormat:@"http://www.google.com%@",
 [node objectForKey:key]];
 }
 }
 }
 NSLog(@"icon = %@", icon);

 // Populate the temperature (an NSString object) in F and C
 //
 NSString *temp_f;
 NSString *temp_c;
 xpathQueryString = @"//current_conditions/temp_f/@data";
 nodes = PerformXMLXPathQuery(responseData, xpathQueryString);
 temp_f = [self fetchContent:nodes];

 xpathQueryString = @"//current_conditions/temp_c/@data";
 nodes = PerformXMLXPathQuery(responseData, xpathQueryString);
 temp_c = [self fetchContent:nodes];

 temp = [NSString stringWithFormat:@"%@F (%@C)", temp_f, temp_c];
 NSLog(@"temp = %@", temp);

 // Populate the humidity (an NSString object)
 //
 xpathQueryString = @"//current_conditions/humidity/@data";
 nodes = PerformXMLXPathQuery(responseData, xpathQueryString);
 humidity = [self fetchContent:nodes];
 NSLog(@"humidity = %@", humidity);

 // Populate the wind (an NSString object)
 //
 xpathQueryString = @"//current_conditions/wind_condition/@data";
 nodes = PerformXMLXPathQuery(responseData, xpathQueryString);
 wind = [self fetchContent:nodes];
 NSLog(@"wind = %@", wind);

 // Populate the condition (an NSString object)
 //
 xpathQueryString = @"//current_conditions/condition/@data";
 nodes = PerformXMLXPathQuery(responseData, xpathQueryString);
 condition = [self fetchContent:nodes];
 NSLog(@"condition = %@", condition);

 // Forecast Conditions //

 // Fill the array (an NSMutableArray) of day names

Getting Data from the Internet | 185

www.it-ebooks.info

http://www.it-ebooks.info/

 //
 xpathQueryString = @"//forecast_conditions/day_of_week/@data";
 nodes = PerformXMLXPathQuery(responseData, xpathQueryString);
 [self populateArray:days fromNodes:nodes];
 NSLog(@"days = %@", days);

 // Fill the array (an NSMutableArray) of day icons
 //
 xpathQueryString = @"//forecast_conditions/icon/@data";
 nodes = PerformXMLXPathQuery(responseData, xpathQueryString);
 for (NSDictionary *node in nodes) {
 for (id key in node) {
 if([key isEqualToString:@"nodeContent"]) {
 [icons addObject:
 [NSString stringWithFormat:@"http://www.google.com%@",
 [node objectForKey:key]]];
 }
 }
 }
 NSLog(@"icons = %@", icons);

 // Fill the array (an NSMutableArray) of daily highs/lows
 //
 NSMutableArray *highs = [[NSMutableArray alloc] init];
 NSMutableArray *lows = [[NSMutableArray alloc] init];

 xpathQueryString = @"//forecast_conditions/high/@data";
 nodes = PerformXMLXPathQuery(responseData, xpathQueryString);
 [self populateArray:highs fromNodes:nodes];
 xpathQueryString = @"//forecast_conditions/low/@data";
 nodes = PerformXMLXPathQuery(responseData, xpathQueryString);
 [self populateArray:lows fromNodes:nodes];
 for(int i = 0; i < highs.count; i++) {
 [temps
 addObject:[NSString stringWithFormat:@"%@F/%@F",
 [highs objectAtIndex:i],
 [lows objectAtIndex:i]]];
 }
 NSLog(@"temps = %@", temps);
 [highs release];
 [lows release];

 // Fill the array (an NSMutableArray) of daily conditions
 //
 xpathQueryString = @"//forecast_conditions/condition/@data";
 nodes = PerformXMLXPathQuery(responseData, xpathQueryString);
 [self populateArray:conditions fromNodes:nodes];
 NSLog(@"conditions = %@", conditions);

 [viewController updateView];
}

186 | Chapter 7: Connecting to the Network

www.it-ebooks.info

http://www.it-ebooks.info/

Populating the UI

Now that we’ve populated the data model, let’s create the updateView: method in our
view controller. This is where we take the data that we just parsed from the XML and
push it into the current view. Replace the updateView: method in MainViewControl-
ler.m with the following:

- (void)updateView {

 // City Info
 nameLabel.text = forecast.location;
 dateLabel.text = forecast.date;

 // Now
 nowTempLabel.text = forecast.temp;
 nowHumidityLabel.text = forecast.humidity;
 nowWindLabel.text = forecast.wind;
 nowConditionLabel.text = forecast.condition;
 NSURL *url = [NSURL URLWithString:(NSString *)forecast.icon];
 NSData *data = [NSData dataWithContentsOfURL:url];
 nowImage.image = [[UIImage alloc] initWithData:data];

 // Day 1
 dayOneLabel.text = [forecast.days objectAtIndex:0];
 dayOneTempLabel.text = [forecast.temps objectAtIndex:0];
 dayOneChanceLabel.text = [forecast.conditions objectAtIndex:0];
 url = [NSURL URLWithString:(NSString *)[forecast.icons objectAtIndex:0]];
 data = [NSData dataWithContentsOfURL:url];
 dayOneImage.image = [[UIImage alloc] initWithData:data];

 // Day 2
 dayTwoLabel.text = [forecast.days objectAtIndex:1];
 dayTwoTempLabel.text = [forecast.temps objectAtIndex:1];
 dayTwoChanceLabel.text = [forecast.conditions objectAtIndex:1];
 url = [NSURL URLWithString:(NSString *)[forecast.icons objectAtIndex:1]];
 data = [NSData dataWithContentsOfURL:url];
 dayTwoImage.image = [[UIImage alloc] initWithData:data];

 // Day 3
 dayThreeLabel.text = [forecast.days objectAtIndex:2];
 dayThreeTempLabel.text = [forecast.temps objectAtIndex:2];
 dayThreeChanceLabel.text = [forecast.conditions objectAtIndex:2];
 url = [NSURL URLWithString:(NSString *)[forecast.icons objectAtIndex:2]];
 data = [NSData dataWithContentsOfURL:url];
 dayThreeImage.image = [[UIImage alloc] initWithData:data];

 // Day 4
 dayFourLabel.text = [forecast.days objectAtIndex:3];
 dayFourTempLabel.text = [forecast.temps objectAtIndex:3];
 dayFourChanceLabel.text = [forecast.conditions objectAtIndex:3];
 url = [NSURL URLWithString:(NSString *)[forecast.icons objectAtIndex:3]];
 data = [NSData dataWithContentsOfURL:url];
 dayFourImage.image = [[UIImage alloc] initWithData:data];

Getting Data from the Internet | 187

www.it-ebooks.info

http://www.it-ebooks.info/

 [loadingActivityIndicator stopAnimating];

}

We’re done. Click the Build and Run button on the Xcode toolbar to build and start
the application in iPhone Simulator.

Once the application starts up, if all goes well you should get something that looks
similar to Figure 7-15. There is, after all, almost always a chance of rain in London.

Figure 7-15. The Weather application running in iPhone Simulator

188 | Chapter 7: Connecting to the Network

www.it-ebooks.info

http://www.it-ebooks.info/

Tidying up

There are several things you can do to tidy up this bare-bones application. First you
should clean up the UI, as it’s pretty untidy when the application opens. The easiest
way to do this is to have all your labels start as blank, and then populate the text when
the view finishes loading the information from the Google Weather Service.

You might also want to add reachability checks when the application opens, and add
some error handling in the connection:didFailWithError: delegate method inside the
WeatherForecast class. You should also allow the user to choose which city to use by
adding a text entry box on the flipside view, or perhaps even a map view.

In Chapter 11, we’ll come back to this example when we discuss using device sensors.
Most people are usually more concerned with the weather where they are now than the
weather somewhere else, so we’ll use the Core Location framework and the iPhone’s
GPS to locate users and provide them with a weather forecast for where they are right
now.

Getting Data from the Internet | 189

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8

Handling Data

Most applications on the iPhone platform will make a network connection to retrieve
data at some point. This data will usually be formatted so that it can be easily parsed,
either as XML or, more frequently these days, as JSON.

In this chapter, we’re going to look at how to get data directly from the user via the UI,
and then how to parse data we’ve retrieved from the network. Finally, we’ll look at how
to store that data on the device.

Data Entry
The Cocoa Touch framework offers a number of UI elements, ranging from text entry
fields to switches and segmented controls. Any of these can be used for data entry, but
often when we talk about data entry we’re talking about getting textual information
into an application.

The two main UI elements that allow you to enter text are the UITextField and UIText
View classes. While they may sound similar, they are actually quite different. The most
noticeable difference between the two is that the UITextView allows you to enter (and
display) a multiline text field, while UITextField doesn’t.

The most annoying difference between the two is the issue of the resigning first res-
ponder. When tapped, both display a keyboard to allow the user to enter text. However,
while the UITextField class allows the user to dismiss the keyboard (at which time the
text field resigns as first responder) when the user taps the Done button, the UIText
View class does not. Though there are multiple ways around this problem, as we’ll find
later on, it’s still one of the more annoying quirks in the Cocoa Touch framework.

UITextField and Its Delegate
In Chapter 5, we used a UITextField as part of our AddCityController view. However,
we didn’t really exploit the full power of this class. We were simply polling the text
field to see if the user had entered any text when the Save button was tapped, and

191

www.it-ebooks.info

http://www.it-ebooks.info/

perhaps more important, we weren’t dismissing the keyboard when the user pressed
the Return key. Here’s the saveCity:sender method from that example:

- (void)saveCity:(id)sender {
 CityGuideDelegate *delegate =
 (CityGuideDelegate *)[[UIApplication sharedApplication] delegate];
 NSMutableArray *cities = delegate.cities;

 UITextField *nameEntry = (UITextField *)[nameCell viewWithTag:777];
 UITextView *descriptionEntry =
 (UITextView *)[descriptionCell viewWithTag:777];

 if (nameEntry.text.length > 0) {
 City *newCity = [[City alloc] init];
 newCity.cityName = nameEntry.text;
 newCity.cityDescription = descriptionEntry.text;
 newCity.cityPicture = cityPicture;
 [cities addObject:newCity];

 RootController *viewController = delegate.viewController;
 [viewController.tableView reloadData];
 }
 [delegate.navController popViewControllerAnimated:YES];

}

However, the UITextFieldDelegate protocol offers a rich set of delegate methods. To
use them, you must declare your class as implementing that delegate protocol (lines
with changes are shown in bold):

@interface AddCityController : UIViewController
 <UITableViewDataSource, UITableViewDelegate, UITextFieldDelegate>
{
 UITextField *activeTextField;

 ... remainder of example code not shown ...
}

If your application has more than one text field in the view, it’s useful to keep track
of which is currently the active field by using an instance variable.

After implementing the delegate protocol, open the NIB that contains
the UITextField (AddCityController.xib in the case of CityGuide). Next,
Ctrl-drag from the UITextField to the controller (File’s Owner in Add-
CityController.xib) and select delegates from the pop up that appears.
Save the NIB when you’re done.

When the user taps the text field, the textFieldShouldBeginEditing: method is called
in the delegate to ascertain whether the text field should enter edit mode and become
the first responder. To implement this, you’d add the following to your controller’s
implementation (such as AddCityController.m):

192 | Chapter 8: Handling Data

www.it-ebooks.info

http://www.it-ebooks.info/

- (BOOL)textFieldShouldBeginEditing:(UITextField *)textField {
 activeTextField = textField;
 return YES;
}

If your application has more than one text field in the view, here’s where you’d set
the currently active field.

If this method returns NO, the text field will not become editable. Only if this method
returns YES will the text field enter edit mode. At this point, the keyboard will be pre-
sented to the user; the text field will become the first responder; and the textFieldDid
BeginEditing: delegate method will be called.

The easiest way to hide the keyboard is to implement the textFieldShouldReturn:
delegate method and explicitly resign as the first responder. This method is called in
the delegate when the Return key on the keyboard is pressed. To dismiss the text field
when you tapped on the Return button, you’d add the following to your controller’s
implementation:

- (BOOL)textFieldShouldReturn:(UITextField *)textField {
 activeTextField = nil;
 [textField resignFirstResponder];
 return YES;
}

If your application is keeping track of the currently active text field, this is where
you should set the active field to nil before it resigns as first responder.

This method is usually used to make the text field resign as first responder, at which
point the delegate methods textFieldShouldEndEditing: and textFieldDidEndEdit
ing: will be triggered.

These methods can be used to update the data model with new content if required, or
after parsing the input, to make other appropriate changes to the UI such as adding or
removing additional elements.

UITextView and Its Delegate
As with the UITextField we used as part of our AddCityController view in Chapter 5,
we didn’t exploit the full power of the UITextView class in that example. Like the
UITextField, the UITextView class has an associated delegate protocol that opens up its
many capabilities.

Dismissing the UITextView

The UITextViewDelegate protocol lacks the equivalent to the textFieldShouldReturn:
method, presumably since we shouldn’t expect the Return key to be a signal that the
user wishes to stop editing the text in a multiline text entry dialog (after all, the user
may want to insert line breaks by pressing Return).

Data Entry | 193

www.it-ebooks.info

http://www.it-ebooks.info/

However, there are several ways around the inability of the UITextView to resign as first
responder using the keyboard. The usual method is to place a Done button in the
navigation bar when the UITextView presents the pop-up keyboard. When tapped, this
button asks the text view to resign as first responder, which will then dismiss the
keyboard.

However, depending on how you’ve planned out your interface, you might want the
UITextView to resign when the user taps outside the UITextView itself.

To do this, you’d subclass UIView to accept touches, and then instruct the text view to
resign when the user taps outside the view itself. Right-click on the Classes group in
the Groups & Files pane in the Xcode interface, select Add→New File, and choose
Cocoa Touch Class from the iPhone OS section. Next, select “Objective-C class” and
choose UIView from the “Subclass of” menu. Click Next and name the class
“CustomView”.

In the interface (CustomView.h), add an IBOutlet for a UITextView:

#import <UIKit/UIKit.h>

@interface CustomView : UIView {
 IBOutlet UITextView *textView;
}

@end

Then, in the implementation (CustomView.m), implement the touchesEn
ded:withEvent: method and ask the UITextView to resign as first responder. Here’s what
the implementation should look like (added lines are shown in bold):

#import "CustomView.h"

@implementation CustomView

- (id)initWithFrame:(CGRect)frame {
 if (self = [super initWithFrame:frame]) {
 // Initialization code
 }
 return self;
}

- (void)dealloc {
 [super dealloc];
}

- (void) awakeFromNib {
 self.multipleTouchEnabled = YES;
}

- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event {
 NSLog(@"touches began count %d, %@", [touches count], touches);

 [textView resignFirstResponder];

194 | Chapter 8: Handling Data

www.it-ebooks.info

http://www.it-ebooks.info/

 [self.nextResponder touchesEnded:touches withEvent:event];
}

@end

Once you’ve added the class, you need to save all your changes, then go into Interface
Builder and click on your view. Open the Identity Inspector (⌘-4) and change the type
of the view in your NIB file to be your CustomView rather than the default UIView class.
Then in the Connections Inspector (⌘-2), drag the textView outlet to the UITextView.
After doing so, and once you rebuild your application, touches outside the active UI
elements will now dismiss the keyboard.

If the UIView you are subclassing is “behind” other UI elements, these
elements will intercept the touches before they reach the UIView layer.

For instance, in the case of the CityGuide3 application from Chapter 6
and its Add City interface, you would have to declare your custom view
to be a subclass of the UITableViewCell class rather than a UIView. You
would then need to change the class of the three table view cells in the
AddCityController.xib main window to be CustomView rather than the
default UITableViewCell (don’t change the class of the view).

You’d then need to connect the textView outlet of all three table view
cells to the UITextView in the table view cell used to enter the long
description.

While this solution is elegant, it can be used in only some situations. In many cases,
you’ll have to resort to the brute force method of adding a Done button to the navigation
bar to dismiss the keyboard.

Parsing XML
The two widely used methods for parsing an XML document are SAX and DOM. A
SAX (Simple API for XML) parser is event-driven. It reads the XML document incre-
mentally and calls a delegate method whenever it recognizes a token. Events are gen-
erated at the beginning and end of the document, and the beginning and end of each
element. A DOM (Document Object Model) parser reads the entire document and
forms a tree-like corresponding structure in memory. You can then use the XPath query
language to select individual nodes of the XML document using a variety of criteria.

Most programmers find the DOM method more familiar and easier to use; however,
SAX-based applications are generally more efficient, run faster, and use less memory.
So, unless you are constrained by system requirements, the only real factor when de-
ciding to use SAX or DOM parsers comes down to preference.

If you want to know more about XML, I recommend Learning XML, Second Edition
by Erik T. Ray (O’Reilly) as a good place to start.

Parsing XML | 195

www.it-ebooks.info

http://oreilly.com/catalog/9780596004200/
http://www.it-ebooks.info/

Parsing XML with libxml2
We met the libxml2 parser and Matt Gallagher’s XPath wrappers in the preceding
chapter, and my advice is to use these wrappers if you want to do DOM-based parsing
of XML on the iPhone or iPod touch.

See the sidebar “Using the XPath Wrappers” on page 182 in Chapter 7 for instructions
on adding the XPathQuery wrappers to your project.

The wrappers offer two methods. The only difference between the two is that one
expects an HTML document and is therefore less strict about what constitutes a
“proper” document than the other, which expects a valid XML document:

NSArray *PerformHTMLXPathQuery(NSData *document, NSString *query);
NSArray *PerformXMLXPathQuery(NSData *document, NSString *query);

If you want to return the entire document as a single data structure, the following will
do that. Be warned that except for the simplest of XML documents, this will normally
generate a heavily nested structure of array and dictionary elements, which isn’t par-
ticularly useful:

NSString *xpathQueryString;
NSArray *nodes;

xpathQueryString = @"/*";
nodes = PerformXMLXPathQuery(responseData, xpathQueryString);
NSLog(@"nodes = %@", nodes);

Let’s take a quick look at the XML document returned by the Google Weather Service
that we parsed in Chapter 7’s Weather application. The XML document had a structure
that looked like the following snippet:

<forecast_conditions>
 ...
 <icon data="/ig/images/weather/chance_of_rain.gif"/>
</forecast_conditions>
<forecast_conditions>
 ...
 <icon data="/ig/images/weather/chance_of_rain.gif"/>
</forecast_conditions>
<forecast_conditions>
 ...
 <icon data="/ig/images/weather/chance_of_rain.gif"/>
</forecast_conditions>
<forecast_conditions>
 ...
 <icon data="/ig/images/weather/chance_of_rain.gif"/>
</forecast_conditions>

To extract the URL of the icons, we carried out an XPath query:

xpathQueryString = @"//forecast_conditions/icon/@data";
nodes = PerformXMLXPathQuery(responseData, xpathQueryString);

196 | Chapter 8: Handling Data

www.it-ebooks.info

http://www.it-ebooks.info/

Here we’re looking for the data attributes as part of an <icon> element, nested inside
a <forecast_conditions> element. An array of all such occurrences will be returned.

The nodes array returned by the PerformXMLXPathQuery method looked like this:

({
 nodeContent = "/ig/images/weather/mostly_sunny.gif";
 nodeName = data;
 },
 {
 nodeContent = "/ig/images/weather/chance_of_rain.gif";
 nodeName = data;
 },
 {
 nodeContent = "/ig/images/weather/mostly_sunny.gif";
 nodeName = data;
 },
 {
 nodeContent = "/ig/images/weather/mostly_sunny.gif";
 nodeName = data;
 }
)

This structure is an NSArray of NSDictionary objects, and we parsed this by iterating
through each array entry and extracting the dictionary value for the key nodeContent,
adding each occurrence to the icons array:

for (NSDictionary *node in nodes) {
 for (id key in node) {
 if([key isEqualToString:@"nodeContent"]) {
 [icons addObject:
 [NSString stringWithFormat:@"http://www.google.com%@",
 [node objectForKey:key]]];
 }
 }
}

Parsing XML with NSXMLParser
The official way to parse XML on the iPhone is to use the SAX-based NSXMLParser class.
However, the parser is strict and cannot take HTML documents:

NSString *url = @"http://feeds.feedburner.com/oreilly/news";
NSURL *theURL = [[NSURL URLWithString:url] retain];

NSXMLParser *parser = [[NSXMLParser alloc] initWithContentsOfURL:theURL];
[parser setDelegate:self];
[parser setShouldResolveExternalEntities:YES];
BOOL success = [parser parse];
NSLog(@"Success = %d", success);

We use the parser by passing it an XML document and then implementing its delegate
methods. The NSXMLParser class offers the following delegate methods:

Parsing XML | 197

www.it-ebooks.info

http://www.it-ebooks.info/

parserDidStartDocument:
parserDidEndDocument:
parser:didStartElement:namespaceURI:qualifiedName:attributes:
parser:didEndElement:namespaceURI:qualifiedName:
parser:didStartMappingPrefix:toURI:
parser:didEndMappingPrefix:
parser:resolveExternalEntityName:systemID:
parser:parseErrorOccurred:
parser:validationErrorOccurred:
parser:foundCharacters:
parser:foundIgnorableWhitespace:
parser:foundProcessingInstructionWithTarget:data:
parser:foundComment:
parser:foundCDATA:

The most heavily used delegate methods out of all of those available methods are the
parser:didStartElement:namespaceURI:qualifiedName:attributes: method and the
parser:didEndElement:namespaceURI:qualifiedName: method. These two methods,
along with the parser:foundCharacters: method, will allow you to detect the start and
end of a selected element and retrieve its contents. When the NSXMLParser object tra-
verses an element in an XML document, it sends three separate messages to its delegate,
in the following order:

parser:didStartElement:namespaceURI:qualifiedName:attributes:
parser:foundCharacters:
parser:didEndElement:namespaceURI:qualifiedName:

Returning to the Weather application: to replace our XPath- and DOM-based solution
with an NSXMLParser-based solution, we would substitute the following code for the
existing queryService:withParent: method:

- (void)queryService:(NSString *)city
 withParent:(UIViewController *)controller {
 viewController = (MainViewController *)controller;
 responseData = [[NSMutableData data] retain];

 NSString *url =
 [NSString stringWithFormat: @"http://www.google.com/ig/api?weather=%@",
 city];
 theURL = [[NSURL URLWithString:url] retain];
 NSXMLParser *parser = [[NSXMLParser alloc] initWithContentsOfURL:theURL];
 [parser setDelegate:self];
 [parser setShouldResolveExternalEntities:YES];
 BOOL success = [parser parse];
}

We would then need to delete all of the NSURLConnection delegate methods, substituting
the following NSXMLParser delegate method to handle populating our arrays:

- (void)parser:(NSXMLParser *)parser
 didStartElement:(NSString *)elementName
 namespaceURI:(NSString *)namespaceURI
 qualifiedName:(NSString *)qName
 attributes:(NSDictionary *)attributeDict {

198 | Chapter 8: Handling Data

www.it-ebooks.info

http://www.it-ebooks.info/

 // Parsing code to retrieve icon path
 if([elementName isEqualToString:@"icon"]) {
 NSString *imagePath = [attributeDict objectForKey:@"data"];
 [icons addObject:
 [NSString stringWithFormat:@"http://www.google.com%@", imagePath]];
 }

 // ... add remaining parsing code for other elements here

 [viewController updateView];
}

This example parses only the icon element; if you wanted to use
NSXMLParser here, you’d need to look at connectionDidFinishLoading:
in the original Weather app, and add parsing code for each of those
elements before you call [viewController updateView] in this method
(otherwise, it will throw an exception and crash the app because none
of the data structures are populated).

Unless you’re familiar with SAX-based parsers, I suggest that XPath and DOM are
conceptually easier to deal with than the event-driven model of SAX. This is especially
true if you’re dealing with HTML, as an HTML document would have to be cleaned
up before being passed to the NSXMLParser class.

Parsing JSON
JSON is a lightweight data-interchange format, which is more or less human-readable
but still easily machine-parsable. While XML is document-oriented, JSON is data-ori-
ented. If you need to transmit a highly structured piece of data, you should probably
render it in XML. However, if your data exchange needs are somewhat less demanding,
JSON might be a good option.

The obvious advantage JSON has over XML is that since it is data-oriented and (almost)
parsable as a hash map, there is no requirement for heavyweight parsing libraries. Ad-
ditionally, JSON documents are much smaller than the equivalent XML documents.
In bandwidth-limited situations, such as you might find on the iPhone, this can be
important. JSON documents normally consume around half of the bandwidth as an
equivalent XML document for transferring the same data.

While there is no native support for JSON in the Cocoa Touch framework, Stig
Brautaset’s json-framework library implements both a JSON parser and a generator and
can be integrated into your project fairly simply.

Parsing JSON | 199

www.it-ebooks.info

http://www.json.org/
http://www.it-ebooks.info/

Consuming Ruby on Rails
If you are dealing exclusively with Rails-based services, the ObjectiveResource frame-
work (see http://iphoneonrails.com/ for more details) is a port of the ActiveResource
framework of Ruby on Rails. It provides a way to serialize Rails objects to and from
Rails’ standard RESTful web services via either XML or JSON. ObjectiveResource adds
methods to NSObject using the category extension mechanism, so any Objective-C class
can be treated as a remote resource.

Download the disk image with the latest version of the json-framework library from
http://code.google.com/p/json-framework/. Open the disk image and drag and drop the
JSON folder into the Classes group in the Groups & Files pane of your project. Re-
member to tick the “Copy items into destination group’s folder” checkbox before add-
ing the files. This will add the JSON source files to your project; you will still need to
import the JSON.h file into your class to use it.

Linking to the JSON Framework
Since dynamic linking to third-party embedded frameworks is not allowed on the
iPhone platform, copying the JSON source files into your project is probably the sim-
plest way to make the parser available to your application. However, there is a slightly
more elegant approach if you don’t want to add the entire JSON source tree to every
project where you use it.

Open the Finder and create an SDKs subfolder inside your home directory’s Library
folder, and copy the JSON folder located inside the SDKs folder in the disk image into
the newly created ~/Library/SDKs directory.

Back in Xcode, open your project and double-click on the project icon at the top of the
Groups & Files pane to open the Project Info window. In the Architectures section in
the Build tab, double-click on the Additional SDKs field and add $HOME/Library/
SDKs/JSON/${PLATFORM_NAME}.sdk to the list of additional SDKs in the pop-up
window. Now go to the Linking subsection of the Build tab, double-click on the Other
Linker Flags field, and add -ObjC -all_load -ljson to the flags using the pop-up
window.

Now you just have to add the following inside your source file:

#import <JSON/JSON.h>

Note the use of angle brackets rather than double quotes around the imported header
file, denoting that it is located in the standard include path rather than in your project.

200 | Chapter 8: Handling Data

www.it-ebooks.info

http://iphoneonrails.com/
http://code.google.com/p/json-framework/
http://www.it-ebooks.info/

The Twitter Search Service
To let you get familiar with the json-framework library, let’s implement a bare-bones
application to retrieve the trending topics on Twitter by making use of their RESTful
Search API.

If you’re interested in the Twitter API, you should definitely look at
Twitter’s documentation for more details regarding the available meth-
ods. However, if you’re serious about using the Twitter API, you should
probably look into using the MGTwitterEngine library written by Matt
Gemmell. You can download it from http://mattgemmell.com/source.

Making a request to the Twitter Search API of the form http://search.twitter.com/trends
.json will return a JSON document containing the top 10 topics that are currently
trending on Twitter. The response includes the time of the request, the name of each
trend, and the URL to the Twitter Search results page for that topic:

{
 "trends":[
 {
 "name":"#musicmonday",
 "url":"http:\/\/search.twitter.com\/search?q=%23musicmonday"
 },
 {
 "name":"Spotify",
 "url":"http:\/\/search.twitter.com\/search?q=Spotify+OR+%23Spotify"
 },
 {
 "name":"Happy Labor Day",
 "url":"http:\/\/search.twitter.com\/search?q=%22Happy+Labor+Day%22"
 },
 {
 "name":"District 9",
 "url":"http:\/\/search.twitter.com\/search?q=%22District+9%22"
 },
 {
 "name":"Goodnight",
 "url":"http:\/\/search.twitter.com\/search?q=Goodnight"
 },
 {
 "name":"Chris Evans",
 "url":"http:\/\/search.twitter.com\/search?q=%22Chris+Evans%22"
 },
 {
 "name":"iPhone",
 "url":"http:\/\/search.twitter.com\/search?q=iPhone+OR+%23Iphone"
 },
 {
 "name":"Jay-Z",
 "url":"http:\/\/search.twitter.com\/search?q=Jay-Z"
 },

Parsing JSON | 201

www.it-ebooks.info

http://apiwiki.twitter.com/
http://mattgemmell.com/source
http://search.twitter.com/trends.json
http://search.twitter.com/trends.json
http://www.it-ebooks.info/

 {
 "name":"Dual-Screen E-Reader",
 "url":"http:\/\/search.twitter.com\/search?q=%22E-Reader%22"
 },
 {
 "name":"Cadbury",
 "url":"http:\/\/search.twitter.com\/search?q=Cadbury"
 }
],
 "as_of":"Mon, 07 Sep 2009 09:18:34 +0000"
}

The Twitter Trends Application
Open Xcode and start a new iPhone Application project. Select the View-based Appli-
cation template, and name the project “TwitterTrends” when prompted for a filename.

We’re going to need the JSON parser, so drag and drop the JSON source folder into
the Classes group in the Groups & Files pane of your new project. Since the returned
JSON document provides a URL, we’re also going to reuse the WebViewController class
we wrote in Chapter 7. Open the Prototype project from Chapter 7, and drag and drop
the WebViewController.m, WebViewController.h, and WebView.xib files from there
into your new project.

Remember to select the “Copy items into destination group’s folder”
checkbox in the pop-up window when copying the files in both cases.

Refactoring

While we’re here, let’s do some refactoring. Open the TwitterTrendsAppDelegate.h file,
right-click on the TwitterTrendsAppDelegate class name in the interface declaration,
and select Refactor. This will bring up the Refactoring window. Let’s change the name
of the main application delegate class from TwitterTrendsAppDelegate to TrendsDele
gate. Entering the new class name and clicking Preview shows that three files will be
affected by the change. Click Apply and Xcode will propagate changes throughout the
project. Remember to save all the affected files (⌘-Option-S) before you go on to
refactor the next set of classes.

Next, let’s refactor the TwitterTrendsViewController class, changing the class name
from TwitterTrendsViewController to the more sensible RootController.

Open the TwitterTrendsViewController.h file, right-click on the TwitterTrendsViewCon
troller class name, and choose Refactor. Set the name to RootController. Click Pre-
view, then Apply, and the changes will again propagate throughout the project. How-
ever, you’ll notice that Xcode has not changed the TwitterTrendsViewController.xib file
to be more sensibly named, so you’ll have to make this change by hand. Click once on

202 | Chapter 8: Handling Data

www.it-ebooks.info

http://www.it-ebooks.info/

this file in the Groups & Files pane, wait a second, and click again; on the second click
you’ll be able to rename it. Change its name to “RootView.xib”.

Unfortunately, since we had to make this change by hand, it hasn’t been propagated
throughout the project. We’ll have to make some more manual changes. Double-click
the MainWindow.xib file to open it in Interface Builder. Click on the Root Controller
icon in the main NIB window and open the Attributes Inspector (⌘-1). The NIB name
associated with the root controller is still set to TwitterTrendsViewController, so set
this to RootView. You can either type the name of the controller into the window and
Xcode will automatically carry out name completion as you type, or use the control on
the right of the text entry box to get a drop-down panel where you’ll find the Root
View NIB listed. Save and close the MainWindow.xib file.

We’re done refactoring, and your Xcode main window should now closely resemble
Figure 8-1.

Figure 8-1. The Twitter Trends application after refactoring

Retrieving the trends

Let’s start by writing a class to retrieve the trends using the Twitter API and the NSURL
Connection class. Right-click (or Ctrl-click) on the Other Sources group in the Groups
& Files pane in Xcode, select Add→New File, and select the Objective-C class, making
it a subclass of NSObject. Name the new class “TwitterTrends” when prompted and
click Finish.

Parsing JSON | 203

www.it-ebooks.info

http://www.it-ebooks.info/

Except for the contents of the connectionDidFinishLoading: method,
this new class is going to be almost identical in structure to the Weather
Forecast class we wrote in Chapter 7.

Open the TwitterTrends.h interface file in the Xcode editor. We’re going to need a
method to allow us to make the request to the Search Service. We’re going to trigger
the request from the RootViewController class. We’ll need a reference back to the view
controller so that we can update the view, so we’ll pass that in as an argument. Add
the lines shown in bold:

#import <Foundation/Foundation.h>

@class RootController;

@interface TwitterTrends : NSObject {
 RootController *viewController;
 NSMutableData *responseData;
 NSURL *theURL;
}

- (void)queryServiceWithParent:(UIViewController *)controller;

@end

Now open the TwitterTrends.m implementation file in the Xcode editor. If you compare
the following code with the code in the WeatherForecast class from Chapter 7, you’ll
see that the code is virtually identical:

#import "TwitterTrends.h"
#import "RootController.h"

@implementation TwitterTrends

- (void)queryServiceWithParent:(UIViewController *)controller {
 viewController = (RootController *)controller;
 responseData = [[NSMutableData data] retain];

 NSString *url =
 [NSString stringWithFormat:@"http://search.twitter.com/trends.json"];
 theURL = [[NSURL URLWithString:url] retain];
 NSURLRequest *request = [NSURLRequest requestWithURL:theURL];
 [[NSURLConnection alloc] initWithRequest:request delegate:self];
}
- (NSURLRequest *)connection:(NSURLConnection *)connection
 willSendRequest:(NSURLRequest *)request
 redirectResponse:(NSURLResponse *)redirectResponse
{
 [theURL autorelease];
 theURL = [[request URL] retain];
 return request;
}
- (void)connection:(NSURLConnection *)connection

204 | Chapter 8: Handling Data

www.it-ebooks.info

http://www.it-ebooks.info/

 didReceiveResponse:(NSURLResponse *)response
{
 [responseData setLength:0];
}

- (void)connection:(NSURLConnection *)connection
 didReceiveData:(NSData *)data
{
 [responseData appendData:data];
}

- (void)connection:(NSURLConnection *)connection
 didFailWithError:(NSError *)error {
 // Handle Error
}

- (void)connectionDidFinishLoading:(NSURLConnection *)connection {
 NSString *content = [[NSString alloc] initWithBytes:[responseData bytes]
 length:[responseData length]
 encoding:NSUTF8StringEncoding];
 NSLog(@"Data = %@", content);

}

-(void)dealloc {
 [viewController release];
 [responseData release];
 [theURL release];
 [super dealloc];
}

@end

OK, now that we have a class that can query the Twitter Search Service, let’s use it.
Inside the viewDidLoad: method of the RootController.m file add the following two lines
of code (you must also uncomment the method by removing the /* before it and the
*/ after it):

TwitterTrends *trends = [[TwitterTrends alloc] init];
[trends queryServiceWithParent:self];

We also have to import the TwitterTrends.h header file once these have been added, so
add the following line to the top of the file:

#import "TwitterTrends.h"

This is a good point to check our code. Make sure you’ve saved your changes and click
the Build and Run button in the Xcode toolbar to compile and deploy your application
in iPhone Simulator. We started the asynchronous query of the Search service from the
viewDidLoad: method, printing the results to the console log when the query completes.
So, once the application has started and you see the gray screen of the default view,
open the Debugger Console (Run→Console) from the Xcode menu bar. You should see
something similar to Figure 8-2. You’ve successfully retrieved the JSON trends file from
the Twitter Search Service.

Parsing JSON | 205

www.it-ebooks.info

http://www.it-ebooks.info/

Building a UI

Now that we’ve managed to successfully retrieve the trends data, let’s build a UI for
the application. Looking at the JSON file, the obvious UI to implement here is a
UITableView. The text in each cell will be the trend name, and when the user clicks on
the cell we can open the associated Search Service URL using our WebControllerView.

Let’s start by modifying the RootController class; since this is a simple bare-bones
application, we’re going to use the view controller class to both control our view and
hold our data model. Open the RootController.h interface file in the Xcode editor and
add the code shown in bold:

#import <UIKit/UIKit.h>

@interface RootController : UIViewController
 <UITableViewDataSource, UITableViewDelegate>
{
 UITableView *serviceView;
 NSMutableArray *names;
 NSMutableArray *urls;
}

@property (nonatomic, retain) IBOutlet UITableView *serviceView;
@property (nonatomic, retain) NSMutableArray *names;
@property (nonatomic, retain) NSMutableArray *urls;

@end

Figure 8-2. The console log showing the retrieved JSON document

206 | Chapter 8: Handling Data

www.it-ebooks.info

http://www.it-ebooks.info/

Make sure you’ve saved your changes, and double-click on the RootView.xib file to
open it in Interface Builder. You’ll initially be presented with a blank view (if you don’t
see it, double-click on the View icon). Drag and drop a navigation bar (UINavigation
Bar) from the Library window into the View window and position it at the top of the
view. Double-click on the title and change it from “Title” to “Twitter Trends”. Now
drag and drop a table view (UITableView) into the View window, and resize it to fill the
remaining part of the view.

Click on File’s Owner in the main RootView NIB window and change to the Connec-
tions Inspector (⌘-2). Click on the serviceView outlet and connect it to your UITable
View. Now click on the UITableView and, again in the Connections Inspector, click and
connect both the dataSource and delegate outlets to File’s Owner.

That’s it; you’re done in Interface Builder, and you should be looking at something
similar to Figure 8-3.

Figure 8-3. The RootView.xib file in Interface Builder

After making sure you’ve saved your changes to the RootView.xib NIB file, return to
Xcode, open the RootController.m implementation file in the Xcode editor, and edit
the code so that it looks like this:

#import "RootController.h"
#import "TwitterTrends.h"

@implementation RootController

Parsing JSON | 207

www.it-ebooks.info

http://www.it-ebooks.info/

@synthesize serviceView;
@synthesize names;
@synthesize urls;

- (void)viewDidLoad {
 names = [[NSMutableArray alloc] init];
 urls = [[NSMutableArray alloc] init];

 [UIApplication
 sharedApplication].networkActivityIndicatorVisible = YES;
 TwitterTrends *trends = [[TwitterTrends alloc] init];
 [trends queryServiceWithParent:self];

 [super viewDidLoad];
}

- (void)didReceiveMemoryWarning {
 [super didReceiveMemoryWarning];
}

- (void)dealloc {
 [names dealloc];
 [urls dealloc];
 [super dealloc];
}

@end

Here we initialize the names and urls arrays we declared in the interface file. These
will be populated by the TwitterTrends class.

This is where we start the network activity indicator in the iPhone status bar spin-
ning. We’ll stop it from the TwitterTrends connectionDidFinishLoading: method.

Here is where we start the asynchronous query to the Twitter Search API.

Now we need to implement the UITableViewDelegate methods; we need to implement
only three of the delegate methods. Add the following methods to RootController.m:

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section
{
 return names.count;
}

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 static NSString *CellIdentifier = @"Cell";
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithFrame:CGRectZero

208 | Chapter 8: Handling Data

www.it-ebooks.info

http://www.it-ebooks.info/

 reuseIdentifier:CellIdentifier]
 autorelease];
 }

 cell.textLabel.text = [names objectAtIndex:indexPath.row];
 return cell;
}

- (void)tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath
{
 // Add code to handle selection here.
 [tableView deselectRowAtIndexPath:indexPath animated:YES];
}

We’re going to display a number of cells (equal to names.count) to the user. The
names array will be filled from the TwitterTrends instance we created in the viewDid
Load: method.

This is where we set the cell label text to be the name of the trending topic.

Click the Build and Run button to test your code. If all goes well, you should still get
the JSON document in the Console, but now your view should be a blank table view.
Why is it blank? Well, we haven’t parsed the JSON and populated our data model yet.
Let’s do that now.

You may also have noticed that the activity indicator keeps spinning.
We’ll take care of that, too.

Parsing the JSON document

We need to modify the connectionDidFinishLoading: method to parse the passed JSON
document, populate the view controller’s data model, and then request it to reload the
table view with the new data.

Parsing JSON is relatively simple, as you will have to work with only one of two struc-
tures: either a single object or a list of objects. These map onto an NSDictionary (a key-
value pair) or an NSArray, respectively. Replace the implementation of connectionDid
FinishLoading: in TwitterTrends.m with the following:

- (void)connectionDidFinishLoading:(NSURLConnection *)connection {

 NSString *content = [[NSString alloc]
 initWithBytes:[responseData bytes]
 length:[responseData length]
 encoding:NSUTF8StringEncoding];

 SBJSON *parser = [[SBJSON alloc] init];
 NSDictionary *json = [parser objectWithString:content];

Parsing JSON | 209

www.it-ebooks.info

http://www.it-ebooks.info/

 NSArray *trends = [json objectForKey:@"trends"];

 for (NSDictionary *trend in trends) {
 [viewController.names addObject:[trend objectForKey:@"name"]];
 [viewController.urls addObject:[trend objectForKey:@"url"]];
 }
 [parser release];
 [UIApplication
 sharedApplication].networkActivityIndicatorVisible = NO;
 [viewController.serviceView reloadData];

}

Here we take the returned response data and create a string representation.

Here we allocate a parser instance.

This is where we use the parser to build an NSDictionary (a hash map) of the JSON
document.

Here is where we extract an array of trend entries from the dictionary, extracting the
object for key “trends”.

Here we extract the NSDictionary object at each array index, and grab the trend name
and URL and populate the view controller using the accessor methods.

This is where we stop the network activity indicator spinning.

Here we ask the view controller to reload its view.

At the top of TwitterTrends.m, add the following:

#import "JSON/JSON.h"

If you rebuild your application in Xcode and run it, you should get something similar
to Figure 8-4. The table view is now populated with the current trending topics on
Twitter.

However, clicking on individual cells doesn’t do anything yet, so we need to modify
the tableView:didSelectRowAtIndexPath: method to use our WebViewController class.
Replace the tableView:didSelectRowAtIndexPath: method in RootController.m with the
following:

- (void)tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath
{
 NSString *title = [names objectAtIndex:indexPath.row];
 NSURL *url = [NSURL URLWithString:[urls objectAtIndex:indexPath.row]];
 WebViewController *webViewController =
 [[WebViewController alloc] initWithURL:url andTitle:title];
 [self presentModalViewController:webViewController animated:YES];
 [webViewController release];
 [tableView deselectRowAtIndexPath:indexPath animated:YES];
}

210 | Chapter 8: Handling Data

www.it-ebooks.info

http://www.it-ebooks.info/

Now that you’re using the WebViewController class, you need to import it into the view
controller, so add the following to the top of RootController.m:

#import "WebViewController.h"

If you rebuild the application again and click on one of the trending topics, the web
view should open modally and you should see something similar to Figure 8-5.

Normally, when the JSON parser fails, it will return a nil value. However, we can add
error handling when parsing the JSON file relatively simply by passing an NSError object
to the parser’s objectWithString:error: method. To do this, locate the connectionDid
FinishLoading: method in TwitterTrends.m and find the following code:

NSDictionary *json = [parser objectWithString:content];
NSArray *trends = [json objectForKey:@"trends"];

for (NSDictionary *trend in trends) {
 [viewController.names addObject:[trend objectForKey:@"name"]];
 [viewController.urls addObject:[trend objectForKey:@"url"]];
}

Replace that code with the following:

NSError *error;
NSDictionary *json = [parser objectWithString:content error:&error];

Figure 8-4. The Twitter Trends application running in iPhone Simulator

Parsing JSON | 211

www.it-ebooks.info

http://www.it-ebooks.info/

if (json == nil) {
 UIAlertView *errorAlert = [[UIAlertView alloc]
 initWithTitle:@"Error"
 message:[error localizedDescription]
 delegate:self cancelButtonTitle:nil otherButtonTitles:@"OK", nil];
 [errorAlert show];
 [errorAlert autorelease];
} else {
 NSArray *trends = [json objectForKey:@"trends"];

 for (NSDictionary *trend in trends) {
 [viewController.names addObject:[trend objectForKey:@"name"]];
 [viewController.urls addObject:[trend objectForKey:@"url"]];
 }
}

Figure 8-5. The Twitter Trends web view

You can verify that this error handler is working by replacing http://
search.twitter.com/trends.json in the queryServiceWithParent: method
in TwitterTrends.m with a URL that does not return a JSON-formatted
response.

212 | Chapter 8: Handling Data

www.it-ebooks.info

http://search.twitter.com/trends.json
http://search.twitter.com/trends.json
http://www.it-ebooks.info/

Tidying up

There are a few bits and pieces that I haven’t added to this application but that you
really should add if you are going to release it. Most of it has to do with error handling;
for instance, you should do a reachability check before trying to retrieve the JSON
document. However, this example illustrated that retrieving and parsing JSON docu-
ments is a relatively simple task. See “Apple’s Reachability Class” on page 145 in
Chapter 7 for details on implementing this.

Regular Expressions
Regular expressions, commonly known as regexes, are a pattern-matching standard for
text processing, and are a powerful tool when dealing with strings. With regular ex-
pressions, an expression serves as a pattern to compare with the text being searched.
You can use regular expressions to search for patterns in a string, replace text, and
extract substrings from the original string.

Introduction to Regular Expressions
In its simplest form, you can use a regular expression to match a literal string; for
example, the regular expression “string” will match the string “this is a string”. Each
character in the expression will match itself, unless it is one of the special characters
+, ?, ., *, ^, $, (,), [, {, |, or \. The special meaning of these characters can be
escaped by prepending a backslash character, \.

We can also tie our expression to the start of a string (^string) or the end of a string
(string$). For the string “this is a string”, ^string will not match the string, while
string$ will.

We can also use quantified patterns. Here, * matches zero or more times, ? matches
zero or one time, and + matches one or more times. So, the regular expression “23*4”
would match “1245”, “12345”, and “123345”, but the expression “23?4” would
match “1245” and also “12345”. Finally, the expression “23+4” would match
“12345” and “123345” but not “1245”.

Unless told otherwise, regular expressions are always greedy; they will normally match
the longest string possible.

While a backslash escapes the meaning of the special characters in an expression, it
turns most alphanumeric characters into special characters. Many special characters
are available; however, the main ones are:

\d
Matches a numeric character

\D
Matches a nonnumeric character

Regular Expressions | 213

www.it-ebooks.info

http://www.it-ebooks.info/

\s
Matches a whitespace character

\S
Matches a nonwhitespace character

\w
Matches an alphanumeric (or the underscore) character

\W
Matches the inverse of \w

All of these special character expressions can be modified by the quantifier modifiers.

Many other bits of more complicated and advanced syntax are available. If you find
yourself making heavy use of regexes, I recommend the books Regular Expressions
Cookbook by Jan Goyvaerts and Steven Levithan and Mastering Regular Expressions,
Third Edition by Jeffrey E. F. Friedl (both from O’Reilly).

RegexKitLite

Unfortunately, there is no built-in support for regular expressions in Objective-C, or
as part of the Cocoa Touch framework. However, the RegexKitLite library adds regular
expression support to the base NSString class. See http://regexkit.sourceforge.net/Regex
KitLite/.

RegexKitLite uses the regular expression engine provided by the ICU
library. Apple does not officially support linking directly to the
libicucore.dylib library. Despite this, many iPhone applications are avail-
able on the App Store that use this library, and it is unlikely that Apple
will reject your application during the App Store review process for
making use of it. However, if you’re worried about using the ICU library,
there are alternatives, such as the libregex wrapper GTMRegex provided
as part of the Google Toolbox for Mac.

To add RegexKitLite to your own project, download the RegexKitLite-<X.X>.tar.bz2
compressed tarball (X.X will be the current version, such as 3.3), and uncompress and
double-click it to extract it. Open the directory and drag and drop the two files,
RegexKitLite.h and RegexKitLite.m, into your project. Remember to select the “Copy
items into destination group’s folder” checkbox before adding the files.

We’re not done yet; we still need to add the libicucore.dylib library to our project.
Double-click on the project icon in the Groups & Files pane in Xcode and go to the
Build tab of the Project Info window. In the Linking subsection of the tab, double-click
on the Other Linker Flags field and add -licucore to the flags using the pop-up window.

You’ll want to use regular expressions to perform three main tasks: matching strings,
replacing strings, and extracting strings. RegexKitLite allows you to do all of these, but

214 | Chapter 8: Handling Data

www.it-ebooks.info

http://oreilly.com/catalog/9780596520694/
http://oreilly.com/catalog/9780596520694/
http://oreilly.com/catalog/9780596528126/
http://oreilly.com/catalog/9780596528126/
http://regexkit.sourceforge.net/RegexKitLite/
http://regexkit.sourceforge.net/RegexKitLite/
http://www.it-ebooks.info/

remember that when you want to use it, you need to import the RegexKitLite.h file into
your class.

Regular expressions use the backslash (\) character to escape characters
that have special meaning inside the regular expression. However, since
the backslash character is the C escape character, these in turn have to
escape any uses of this character inside your regular expression by pre-
pending it with another backslash character. For example, to match a
literal ampersand (&) character, you must first prepend it with a back-
slash to escape it for the regular expression engine, and then prepend it
with another backslash to escape this in turn for the compiler—that is,
\\&. To match a single literal backslash (\) character with a regular ex-
pression therefore requires four backslashes: \\\\.

The RegexKitLite library operates by extending the NSString class via an Objective-C
category extension mechanism, making it very easy to use. If you want to match a string,
you simply operate directly on the string you want to match. You can create a view-
based project and add the following code into the applicationDidFinishLaunching:
method. Just be sure to add #import "RegexKitLite.h" to the top of the app dele-
gate’s .m (implementation) file.

NSString *string = @"This is a string";
NSString *match = [string stringByMatching:@"a string$" capture:0];
NSLog(@"%@", match);

This will return the first occurrence of the matched string.

If the match fails, the match variable will be set to nil, and if you want to replace a string,
it’s almost as easy:

NSString *string2 = @"This is a string";
NSString *regexString = @"a string$";
NSString *replacementString = @"another string";

NSString *newString = nil;
newString = [string2
 stringByReplacingOccurrencesOfRegex:regexString
 withString:replacementString];
NSLog(@"%@", newString);

If you run the application, you’ll just get a gray window. Return to Xcode and choose
Run→Console to see the output of the NSLog calls.

This will match “a string” in the variable string2, replacing it and creating the string
“This is another string” in the variable newString.

While I’ve provided some examples to get you started, it would be impossible to cover
regular expressions in detail here, and whole books have been written about this sub-
ject. Additionally, the RegexKitLite library provides many other methods on top of
those I’ve covered here, so if you need to perform regular expression tasks I haven’t

Regular Expressions | 215

www.it-ebooks.info

http://www.it-ebooks.info/

talked about, you might want to look at the documentation, which you can find at http:
//regexkit.sourceforge.net/RegexKitLite/.

Faking regex support with the built-in NSPredicate

While Cocoa Touch does not provide “real” regular expression support, Core Data
does provide the NSPredicate class that allows you to carry out some operations that
would normally be done via regular expressions in other languages. For those familiar
with SQL, the NSPredicate class operates in a very similar manner to the SQL WHERE
statement.

Let’s assume we have an NSArray of NSDictionary objects, structured like this:

NSArray *arrayOfDictionaries = [NSArray arrayWithObjects:
 [NSDictionary dictionaryWithObjectsAndKeys:
 @"Learning iPhone Programming", @"title", @"2010", @"year", nil],
 [NSDictionary dictionaryWithObjectsAndKeys:
 @"Arduino Orbital Lasers", @"title", @"2012", @"year", nil],
 nil];

We can test whether a given object in the array matches the criteria foo = "bar" AND
baz = "qux" as follows:

NSPredicate *predicate =
 [NSPredicate predicateWithFormat:@"year = '2012'"];
for (NSDictionary *dictionary in arrayOfDictionaries) {
 BOOL match = [predicate evaluateWithObject:dictionary];
 if (match) {
 NSLog(@"Found a match!");
 }
}

Alternatively, we can extract all entries in the array that match the predicate:

NSPredicate *predicate2 =
 [NSPredicate predicateWithFormat:@"year = '2012'"];
NSArray *matches =
 [arrayOfDictionaries filteredArrayUsingPredicate:predicate2];
for (NSDictionary *dictionary in matches) {
 NSLog(@"%@", [dictionary objectForKey: @"title"]);
}

However, we can also use predicates to test strings against regular expressions. For
instance, the following code will test the email string against the regex we provided,
returning YES if it is a valid email address:

NSString *email = @"alasdair@babilim.co.uk";
NSString *regex = @"^\\b[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\\.[a-zA-Z]{2,4}\\b$";
NSPredicate *predicate3 =
 [NSPredicate predicateWithFormat:@"SELF MATCHES %@", regex];
BOOL match = [predicate3 evaluateWithObject:email];
if (match) {
 NSLog(@"Found a match!");
}

216 | Chapter 8: Handling Data

www.it-ebooks.info

http://regexkit.sourceforge.net/RegexKitLite/
http://regexkit.sourceforge.net/RegexKitLite/
http://www.it-ebooks.info/

While the NSPredicate class is actually defined as part of the Foundation framework,
it is intended (and used extensively) as part of the Core Data framework. We’re not
going to cover Core Data in this book. If you’re interested in this framework, I recom-
mend you look at Core Data: Apple’s API for Persisting Data on Mac OS X by Marcus
S. Zarra (Pragmatic Programmers).

Storing Data
If the user creates data while running your application, you may need a place to store
the data so that it’s there the next time the user runs it. You’ll also want to store user
preferences, passwords, and many other forms of data. You could store data online
somewhere, but then your application won’t function unless it’s online. The iPhone
can store data in lots of ways.

Using Flat Files
So-called flat files are files that contain data, but are typically not backed by the power
of a full-featured database system. They are useful for storing small bits of text data,
but they lack the performance and organizational advantages that a database provides.

Applications running on the iPhone or iPod touch are sandboxed; you can access only
a limited subset of the filesystem from your application. If you want to save files from
your application, you should save them into the application’s Document directory.

Here’s the code you need to locate the application’s Document directory:

NSArray *arrayPaths = NSSearchPathForDirectoriesInDomains(
 NSDocumentDirectory, NSUserDomainMask, YES);
NSString *docDirectory = [arrayPaths objectAtIndex:0];

The first entry in the array will contain the file path to the application’s Document
directory.

Reading and writing text content

The NSFileManager methods generally deal with NSData objects.

For writing to a file, you can use the writeToFile:atomically:encoding:error: method:

NSString *string = @"Hello, World";
NSString *filePath = [docDirectory stringByAppendingString:@"/File.txt"];
[string writeToFile:filePath
 atomically:YES
 encoding:NSUTF8StringEncoding
 error:nil];

If you want to simply read a plain-text file, you can use the NSString class method
stringWithContentsOfFile:encoding:error: to read from the file:

Storing Data | 217

www.it-ebooks.info

http://www.it-ebooks.info/

NSString *fileContents = [NSString stringWithContentsOfFile:filePath
 encoding:NSUTF8StringEncoding error:nil];
NSLog(@"%@", fileContents);

Creating temporary files

To obtain the path to the default location to store temporary files, you can use the
NSTemporaryDirectory method:

NSString *tempDir = NSTemporaryDirectory();

Other file manipulation

The NSFileManager class can be used for moving, copying, creating, and deleting files.

Storing Information in an SQL Database
The public domain SQLite library is a lightweight transactional database. The library
is included in the iPhone SDK and will probably do most of the heavy lifting you need
for your application to store data. The SQLite engine powers several large applications
on Mac OS X, including the Apple Mail application, and is extensively used by the
latest generation of browsers to support HTML5 database features. Despite the “Lite”
name, the library should not be underestimated.

Interestingly, unlike most SQL database engines, the SQLite engine makes use of dy-
namic typing. Most other SQL databases implement static typing: the column in which
a value is stored determines the type of a value. Using SQLite the column type specifies
only the type affinity (the recommended type) for the data stored in that column.
However, any column may still store data of any type.

Each value stored in an SQLite database has one of the storage types shown in Table 8-1.

Table 8-1. SQLite storage types

Storage type Description

NULL The value is a NULL value.

INTEGER The value is a signed integer.

REAL The value is a floating-point value.

TEXT The value is a text string.

BLOB The value is a blob of data, stored exactly as it was input.

If you’re not familiar with SQL, I recommend you read Learning SQL, Second Edi
tion by Alan Beaulieu (O’Reilly). If you want more information about SQLite specifi-
cally, I also recommend SQLite by Chris Newman (Sams).

218 | Chapter 8: Handling Data

www.it-ebooks.info

http://www.sqlite.org
http://oreilly.com/catalog/9780596520847/
http://oreilly.com/catalog/9780596520847/
http://www.it-ebooks.info/

Adding a database to your project

Let’s create a database for the City Guide application. Open the CityGuide project in
Xcode and take a look at the application delegate implementation where we added four
starter cities to the application’s data model. Each city has three bits of interesting
information associated with it: its name, description, and an associated image. We need
to put this information into a database table.

If you don’t want to create the database for the City Guide application
yourself, you can download a prebuilt copy containing the starter cities
from this book’s website.

Open a Terminal window, and at the command prompt type the code shown in bold:

$ sqlite3 cities.sqlite

This will create a cities database and start SQLite in interactive mode. At the SQL
prompt, we need to create our database tables to store our information. Type the code
shown in bold (sqlite> and ...> are the SQLite command prompts):

SQLite version 3.4.0
Enter ".help" for instructions
sqlite> CREATE TABLE cities(id INTEGER PRIMARY KEY AUTOINCREMENT,
 ...> name TEXT, description TEXT, image BLOB);
sqlite> .quit

At this stage, we have an empty database and associated table. We need to add image
data to the table as BLOB (binary large object) data; the easiest way to do this is to use
Mike Chirico’s eatblob.c program available from http://souptonuts.sourceforge.net/code/
eatblob.c.html.

The eatblob.c code will not compile out of the box on Mac OS X, as it
makes use of the getdelim and getline functions. Both of these are
GNU-specific and are not made available by the Mac’s stdlib library.
However, you can download the necessary source code from http://lear
ningiphoneprogramming.com/.

Once you have downloaded the eatblob.c source file along with the
associated getdelim.[h,c] and getline[h,c] source files, you can compile
the eatblob program from the command line:

% gcc -o eatblob * -lsqlite3

So, for each of our four original cities defined inside the app delegate, we need to run
the eatblob code:

% ./eatblob cities.sqlite ./London.jpg "INSERT INTO cities (id, name,
description, image) VALUES (NULL, 'London', 'London is the capital of the
United Kingdom and England.', ?)"

Storing Data | 219

www.it-ebooks.info

http://learningiphoneprogramming.com/
http://souptonuts.sourceforge.net/code/eatblob.c.html
http://souptonuts.sourceforge.net/code/eatblob.c.html
http://learningiphoneprogramming.com/
http://learningiphoneprogramming.com/
http://www.it-ebooks.info/

to populate the database file with our “starter cities.”

It’s arguable whether including the images inside the database using a
BLOB is a good idea, except for small images. It’s a normal practice to
include images as a file and include only metadata inside the database
itself; for example, the path to the included image. However, if you want
to bundle a single file (with starter data) into your application, it’s a
good trick.

We’re now going to add the cities database to the City Guide application. However,
you might want to make a copy of the City Guide application before modifying it.
Navigate to where you saved the project and make a copy of the project folder, and
then rename it, perhaps to CityGuideWithDatabase. Then open the new (duplicate)
project inside Xcode and use the Project→Rename tool to rename the project itself.

After you’ve done this, open the Finder again and navigate to the directory where you
created the cities.sqlite database file. Open the CityGuide project in Xcode, then drag
and drop it into the Resources folder of the CityGuide project in Xcode. Remember to
check the box to indicate that Xcode should “Copy items into destination group’s
folder.”

To use the SQLite library, you’ll need to add it to your project. Double-click on the
project icon in the Groups & Files pane in Xcode and go to the Build tab of the Project
Info window. In the Linking subsection of the tab, double-click on the Other Linker
Flags field and add -lsqlite3 to the flags using the pop-up window.

Data persistence for the City Guide application

We’ve now copied our database into our project, so let’s add some data persistence to
the City Guide application.

Since our images are now inside the database, you can delete the images from the
Resources group in the Groups & Files pane in Xcode. Remember not to delete the
QuestionMark.jpg file because our add city view controller will need that file.

SQLite runs much slower on the iPhone than it does in iPhone Simula-
tor. Queries that run instantly on the simulator may take several seconds
to run on the iPhone. You need to take this into account in your testing.

If you’re just going to be querying the database, you can leave cities.sqlite in place and
refer to it via the application bundle’s resource path. However, files in the bundle are
read-only. If you intend to modify the contents of the database as we do, your appli-
cation must copy the database file to the application’s document folder and modify it
from there. One advantage to this approach is that the contents of this folder are pre-
served when the application is updated, and therefore cities that users add to your
database are also preserved across application updates.

220 | Chapter 8: Handling Data

www.it-ebooks.info

http://www.it-ebooks.info/

We’re going to add two methods to the application delegate (CityGuideDelegate.m).
The first copies the database we included inside our application bundle to the appli-
cation’s Document directory, which allows us to write to it. If the file already exists in
that location, it won’t overwrite it. If you need to replace the database file for any reason,
the easiest way is to delete your application from the simulator and then redeploy it
using Xcode. Add the following method to CityGuideDelegate.m:

- (NSString *)copyDatabaseToDocuments {
 NSFileManager *fileManager = [NSFileManager defaultManager];
 NSArray *paths =
 NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,
 NSUserDomainMask, YES);
 NSString *documentsPath = [paths objectAtIndex:0];
 NSString *filePath = [documentsPath
 stringByAppendingPathComponent:@"cities.sqlite"];

 if (![fileManager fileExistsAtPath:filePath]) {
 NSString *bundlePath = [[[NSBundle mainBundle] resourcePath]
 stringByAppendingPathComponent:@"cities.sqlite"];
 [fileManager copyItemAtPath:bundlePath toPath:filePath error:nil];
 }
 return filePath;
}

The second method will take the path to the database passed back by the previous
method and populate the cities array. Add this method to CityGuideDelegate.m:

-(void) readCitiesFromDatabaseWithPath:(NSString *)filePath {

 sqlite3 *database;

 if(sqlite3_open([filePath UTF8String], &database) == SQLITE_OK) {
 const char *sqlStatement = "select * from cities";
 sqlite3_stmt *compiledStatement;
 if(sqlite3_prepare_v2(database, sqlStatement,
 -1, &compiledStatement, NULL) == SQLITE_OK) {
 while(sqlite3_step(compiledStatement) == SQLITE_ROW) {

 NSString *cityName =
 [NSString stringWithUTF8String:(char *)
 sqlite3_column_text(compiledStatement, 1)];
 NSString *cityDescription =
 [NSString stringWithUTF8String:(char *)
 sqlite3_column_text(compiledStatement, 2)];

 NSData *cityData = [[NSData alloc]
 initWithBytes:sqlite3_column_blob(compiledStatement, 3)
 length: sqlite3_column_bytes(compiledStatement, 3)];
 UIImage *cityImage = [UIImage imageWithData:cityData];

 City *newCity = [[City alloc] init];
 newCity.cityName = cityName;
 newCity.cityDescription = cityDescription;
 newCity.cityPicture = (UIImage *)cityImage;

Storing Data | 221

www.it-ebooks.info

http://www.it-ebooks.info/

 [self.cities addObject:newCity];
 [newCity release];
 }
 }
 sqlite3_finalize(compiledStatement);
 }
 sqlite3_close(database);
}

You’ll also have to declare the methods in CityGuideDelegate.m’s interface file, so add
the following lines to CityGuideDelegate.h just before the @end directive:

-(NSString *)copyDatabaseToDocuments;
-(void) readCitiesFromDatabaseWithPath:(NSString *)filePath;

In addition, you need to import the sqlite3.h header file into the implementation, so
add this line to the top of CityGuideDelegate.m:

#include <sqlite3.h>

After we add these routines to the delegate, we must modify the applicationDidFinish
Launching: method, removing our hardcoded cities and instead populating the
cities array using our database. Replace the applicationDidFinishLaunching: method
in CityGuideDelegate.m with the following:

- (void)applicationDidFinishLaunching:(UIApplication *)application {

 cities = [[NSMutableArray alloc] init];
 NSString *filePath = [self copyDatabaseToDocuments];
 [self readCitiesFromDatabaseWithPath:filePath];

 navController.viewControllers = [NSArray arrayWithObject:viewController];
 [window addSubview:navController.view];
 [window makeKeyAndVisible];
}

We’ve reached a good point to take a break. Make sure you’ve saved your changes
(⌘-Option-S), and click the Build and Run button on the Xcode toolbar. If all goes well,
when your application starts it shouldn’t look different from the City Guide application
at the end of Chapter 5.

OK, we’ve read in our data in the application delegate. However, we still don’t save
newly created cities; we need to insert the new cities into the database when the user
adds them from the AddCityController view. Add the following method to the view
controller (AddCityController.m):

-(void) addCityToDatabase:(City *)newCity {
 NSArray *paths =
 NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,
 NSUserDomainMask, YES);
 NSString *documentsPath = [paths objectAtIndex:0];
 NSString *filePath =
 [documentsPath stringByAppendingPathComponent:@"cities.sqlite"];

 sqlite3 *database;

222 | Chapter 8: Handling Data

www.it-ebooks.info

http://www.it-ebooks.info/

 if(sqlite3_open([filePath UTF8String], &database) == SQLITE_OK) {
 const char *sqlStatement =
 "insert into cities (name, description, image) VALUES (?, ?, ?)";
 sqlite3_stmt *compiledStatement;
 if(sqlite3_prepare_v2(database, sqlStatement,
 -1, &compiledStatement, NULL) == SQLITE_OK)
 {
 sqlite3_bind_text(compiledStatement, 1,
 [newCity.cityName UTF8String], -1,
 SQLITE_TRANSIENT);
 sqlite3_bind_text(compiledStatement, 2,
 [newCity.cityDescription UTF8String], -1,
 SQLITE_TRANSIENT);
 NSData *dataForPicture =
 UIImagePNGRepresentation(newCity.cityPicture);
 sqlite3_bind_blob(compiledStatement, 3,
 [dataForPicture bytes],
 [dataForPicture length],
 SQLITE_TRANSIENT);

 }
 if(sqlite3_step(compiledStatement) == SQLITE_DONE) {
 sqlite3_finalize(compiledStatement);
 }
 }
 sqlite3_close(database);
}

We also need to import the sqlite3.h header file; add this line to the top of AddCity-
Controller.m:

#include <sqlite3.h>

Then insert the call into the saveCity: method, directly after the line where you added
the newCity to the cities array. The added line is shown in bold:

if (nameEntry.text.length > 0) {
 City *newCity = [[City alloc] init];
 newCity.cityName = nameEntry.text;
 newCity.cityDescription = descriptionEntry.text;
 newCity.cityPicture = nil;
 [cities addObject:newCity];
 [self addCityToDatabase:newCity];

 RootController *viewController = delegate.viewController;
 [viewController.tableView reloadData];
}

We’re done. Build and deploy the application by clicking the Build and Run button in
the Xcode toolbar. When the application opens, tap the Edit button and add a new
city. Make sure you tap Save, and leave edit mode.

Then tap the Home button in iPhone Simulator to quit the City Guide application. Tap
the application again to restart it, and you should see that your new city is still in the list.

Storing Data | 223

www.it-ebooks.info

http://www.it-ebooks.info/

Congratulations, the City Guide application can now save its data.

Refactoring and rethinking

If we were going to add more functionality to the City Guide application, we should
probably pause at this point and refactor. There are, of course, other ways we could
have built this application, and you’ve probably already noticed that the database
(our data model) is now exposed to the AddCityViewController class as well as the
CityGuideDelegate class.

First, we’d change things so that the cities array is only accessed through the accessor
methods in the application delegate, and then move all of the database routines into
the delegate and wrap them inside those accessor methods. This would isolate our data
model from our view controller. We could even do away with the cities array and keep
the data model “on disk” and access it directly from the SQL database rather than
preloading a separate in-memory array.

Although we could do this refactoring now, we won’t do so in this chapter. However,
in your own applications, I suggest that you don’t access SQLite directly. Instead, use
Core Data (discussed next) or be sure to move your SQLite calls into the delegate to
abstract it from the view controller.

Core Data
Sitting above SQLite, and several other possible low-level data representations, is Core
Data. The Core Data framework is an abstraction layer above the underlying data rep-
resentation. Technically, Core Data is an object-graph management and persistence
framework. Essentially, this means that Core Data organizes your application’s model
layer, keeping track of changes to objects. It allows you to reverse those changes on
demand—for instance, if the user performs an undo command—and then allows you
to serialize (archive) the application’s data model directly into a persistent store.

Core Data is an ideal framework for building the model part of an MVC-based appli-
cation, and if used correctly it is an extremely powerful tool. I’m not going to cover
Core Data in this book, but if you’re interested in exploring the Core Data framework,
I’ve provided some pointers to further reading in Chapter 14.

224 | Chapter 8: Handling Data

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9

Distributing Your Application

At this point, you have several applications that are almost ready to distribute, and
perhaps you have ideas for your own applications and you want to start writing your
first application and publish it to the App Store. However, before you can do that, you
have to do some more housekeeping.

Adding Missing Features
Two things have been missing from your iPhone applications, the first being the lack
of a custom icon. This is crucial for the marketing of your application; you need to
bring your application design together to present it to users. When a user scrolls
through a long list of possible applications on the App Store, applications with strong
icon design stand out. But remember that the user has to look at your application’s
icon every time he looks at the iPhone’s home screen. The icon has to be distinctive to
stand out, but it also has to be attractive so that the user is willing to keep your appli-
cation around. I’ve uninstalled otherwise good applications because I couldn’t put up
with their icons, and I’m not alone.

Adding an Icon
The standard iPhone home screen icon used for your application is 57×57 pixels square
in PNG format with no transparency or layers (Icon.png). You also must provide Apple
with a 512×512-pixel version of your application icon for display on the App Store
(iTunesArtwork with no extension; you will need to provide this when you upload your
app). This larger image must be in TIFF or JPEG format, and again have no transparency
or layers.

It’s sensible to design your icon as 512×512 pixels and scale it down to the 57×57-pixel
version supplied inside your application’s bundle. Doing things the other way around
usually means that an unattractive and often pixelated icon is shown on the App Store.

225

www.it-ebooks.info

http://www.it-ebooks.info/

You can also provide a small icon, as a 29×29-pixel PNG file, in your
application bundle called Icon-Small.png. Spotlight will use this icon on
the device when the application name matches a term in the search
query. Additionally, if your application includes a Settings Bundle (see
Chapter 12 for more on Settings Bundles), this icon is displayed next to
your application’s name in the Settings application. If you do not pro-
vide this icon, your 57×57-pixel image is automatically scaled and used
instead.

Both the iPhone and the iTunes store will, by default, apply some visual effects to the
icon you provide. They will round the corners, and add both drop shadows and
reflected shine.

You can prevent iTunes from adding visual effects by setting the UIPrerenderedIcon flag
inside the application’s Info.plist file. To do so, open the <ApplicationName>-
Info.plist file for your project in the Xcode editor (it’s in the Resources folder under
Groups & Files) and click on the bottom entry, where a button with a plus sign on it
will appear to the righthand side of the key-value pair table. Click on this button to add
a new row to the table, and scroll down the list of possible options and select “Icon
already includes gloss and bevel effects,” as shown in Figure 9-1. When you’ve done
so, check the box in the Value column to turn off the default visual effects added by
both iTunes and the iPhone.

Figure 9-1. Adding the UIPrerenderedIcon flag to our application’s Info.plist

226 | Chapter 9: Distributing Your Application

www.it-ebooks.info

http://www.it-ebooks.info/

Let’s generate an icon for the City Guide application we built in Chapter 5. Fig-
ure 9-2 shows a sample image from the Tango Desktop Project, which was released
into the public domain and is available from Wikimedia Commons. You can find many
public domain images at Wikimedia Commons. It’s advisable for you to make modi-
fications to the images you find there to avoid possible confusion—because the images
are public domain, other people may use them in their own applications.

Figure 9-2. A simple icon for our City Guide application

You can download the icon shown in Figure 9-2 from http://commons.wikimedia.org/
wiki/File:Applications-internet.svg (right-click or Ctrl-click the link labeled Applica
tions-internet.svg and choose Save Linked File). Open it in an image editor such as
Adobe Illustrator or the free and open source Inkscape.

Resize the file to 57×57 pixels and save it as a PNG file named Icon.png. (If you are
using Inkscape, you will need to use File→Export Bitmap, choose the Page option, and
set the width and height to 57 before you click Export.)

Next, open the City Guide application in Xcode. Drag and drop the Icon.png file into
the Resources group in the Groups & Files pane, making sure to tick the box to indicate
that Xcode should “Copy items into destination’s group.” Now double-click on the
CityGuide-Info.plist file to open it in the Xcode editor, and set the Icon file to
Icon.png, as shown in Figure 9-3.

If you build and deploy the application by clicking the Build and Run button in the
Xcode toolbar, the application will start inside iPhone Simulator. If you quit the ap-
plication by clicking the Home button, you will see that it now has a shiny new icon,
as shown in Figure 9-4.

Adding a Launch Image
One of the ways in which the iPhone and the iPod touch cheat is by providing launch
images. A launch image is immediately displayed on the screen when the application
is started before the UI is displayed. Your application displays the launch image file
while loading, which means there are no more blank screens while the application
loads.

Adding Missing Features | 227

www.it-ebooks.info

http://commons.wikimedia.org
http://commons.wikimedia.org/wiki/File:Applications-internet.svg
http://commons.wikimedia.org/wiki/File:Applications-internet.svg
http://inkscape.org
http://www.it-ebooks.info/

Figure 9-3. Adding the icon to the Info.plist file

Figure 9-4. The City Guide application with its new icon

228 | Chapter 9: Distributing Your Application

www.it-ebooks.info

http://www.it-ebooks.info/

Let’s add one of these to the City Guide application. Build and deploy the City Guide
application onto your iPhone or iPod touch. While your device is still connected
and your application is still running, open the Organizer window by going to
Window→Organizer in the Xcode menu bar. You will see a glowing green dot next to
your device. Select your device, and in the Screenshots tab click the Capture button.
Xcode will take a screen capture from your application, as shown in Figure 9-5.

Figure 9-5. The Xcode Organizer window with a screen capture of the City Guide application’s UI

Click the Save As Default Image button and select your project from the menu. When
you return to the project in Xcode, you’ll notice a Default.png image file appear in the
Resources group in your project. If you rebuild the City Guide application at this point
and redeploy it, the application will apparently now load instantly.

Although many developers have chosen to use the launch image as a splash screen,
that’s not how Apple intended this image to be used. Instead, it is intended to improve
the user experience. Its presence adds to the user’s perception that your application is
quick to load and immediately ready for use when it does load.

Because this is a mobile platform, users will switch between applications frequently.
Even more than on the Web, where users’ attention spans are notoriously short, on the
iPhone and iPod touch, users will become frustrated with applications that take a long
time to launch (or shut down). You need to work to keep the launch time of your

Adding Missing Features | 229

www.it-ebooks.info

http://www.it-ebooks.info/

application to a minimum, and use the launch image to make a subtle transition into
your application.

The launch image measures 320×480 pixels, and generally should be identical to the
first screen of your application. However, since this is an image, the content is static,
so you should not include any interface elements that may change from launch to
launch. Therefore, avoid displaying elements that might look different between the
launch image and your first screen. For instance, the Default.png image file we gener-
ated for our City Guide application includes a list of cities, but what happens if the user
adds more cities? The list will change. We can’t update the list of cities in the launch
image, so it’s probably best to remove them, leaving only the table view as shown in
Figure 9-6. (This also has the benefit of hinting to the user that she can’t interact with
the app just yet.)

To do this, right-click on the Default.png image file in Xcode and select Reveal in Finder.
This will open the Finder and highlight the image in your project folder. You can now
open this image in your preferred image editor and make any changes you want. Re-
member, you need to save it back as a single-layer PNG file without transparency;
otherwise, your application will have problems loading the file at launch.

Figure 9-6. A screen capture of the opening screen of the City Guide application (left), and the modified
version (right) without the city entries

Most applications’ launch images will be very plain; this is not a problem, as they are
there solely to convince your users that your application is quick to load. If you interrupt
the user experience with a splash screen, your users might ask themselves why you’re
wasting their time displaying such a screen, and why you don’t just get on with it and

230 | Chapter 9: Distributing Your Application

www.it-ebooks.info

http://www.it-ebooks.info/

load the application. If you make use of the launch image correctly, they’ll know that
you’re doing your best to give them a seamless experience.

Changing the Display Name
The name displayed beneath your application icon on the iPhone home screen is, by
default, the name of your Xcode project. However, only a limited number of characters
are displayed before an ellipsis is inserted and your application name is truncated. This
is fairly messy, and generally users don’t like it. Fortunately, you can change your ap-
plication’s display name by editing the “Bundle display name” field in the application’s
Info.plist file.

If you look at our City Guide application, you’ll notice that the display name is the
same as our project name: “CityGuide”. While the name is not long enough to be
truncated when displayed on the iPhone’s home screen, we might want it to be dis-
played as “City Guide” instead. Let’s make that change now.

Open the CityGuide project in Xcode and click on the CityGuide-Info.plist file to open
it in the Xcode editor. Double-click on the Value field in the “Bundle display name”
field and change the ${PRODUCT_NAME} macro to City Guide, as shown in Figure 9-7.

If you rebuild the application and deploy it in iPhone Simulator, you’ll notice that the
name displayed below the City Guide application icon has changed from “CityGuide”
to “City Guide”.

Figure 9-7. Setting the “Bundle display name” in the City Guide application’s Info.plist file

Adding Missing Features | 231

www.it-ebooks.info

http://www.it-ebooks.info/

Enabling Rotation
Until now, all of the applications we have built in the book have been in portrait mode
and would not rotate into landscape mode, as many iPhone applications do when the
user rotates the phone. Enabling this functionality is actually amazingly easy. In your
view controller class, add the following method:

- (BOOL)shouldAutorotateToInterfaceOrientation:
 (UIInterfaceOrientation)interfaceOrientation {
 // Return YES for all supported orientations
 return YES;
}

If you rebuild your application and rotate your device, or if you select Hardware→Rotate
Left or Hardware→Rotate Right in the simulator, your UI will rotate into landscape
mode. If you have multiple view controllers (such as RootController.m, CityControl-
ler.m, and AddCityController.m), you need to add this method to each of them.

Although the shouldAutorotateToInterfaceOrientation: method was
called in a timely fashion under the 2.0 SDK, this is not always the case
under the 3.0 SDK. To ensure that you are (reliably) notified of changes
in the device orientation, you should register for notification of orien-
tation change messages.

However, the UI elements will also squash and stretch into the new orientation. You
need to make sure that the individual UI elements can cope with their new sizes ele-
gantly. You can do that in one of two ways:

• Be careful when using the Size tab in the Inspector window in Interface Builder to
make sure they stretch in the correct fashion. The easiest way to do this is to make
use of the Autosizing, Alignment, and Placement sections in the Size tab.

• Register for orientation change notifications and dynamically adapt your UI based
on those events. For example, the built-in Calculator application has a different UI
in portrait and landscape modes.

You can start generating orientation change notifications by calling this method of the
UIDevice class (in the viewDidLoad: method of your view controller class):

[[UIDevice currentDevice] beginGeneratingDeviceOrientationNotifications];

When you are no longer concerned about orientation changes, you stop such notifi-
cations by calling this method:

[[UIDevice currentDevice] endGeneratingDeviceOrientationNotifications];

After starting notifications, you must also register your class to receive such messages
using the NSNotificationCenter class:

NSNotificationCenter *notificationCenter =
 [NSNotificationCenter defaultCenter];

232 | Chapter 9: Distributing Your Application

www.it-ebooks.info

http://www.it-ebooks.info/

[notificationCenter addObserver:self
 selector:@selector(handlerMethod:)
 name:@"UIDeviceOrientationDidChangeNotification"
 object:nil];

This would invoke the handlerMethod: selector (elsewhere in your view controller) in
the current class when such a message was received:

-(void) handlerMethod:(NSNotification *)note {

 /* Deal with rotation of your UI here */
}

Building and Signing
The certificates we generated in Chapter 2 were intended only for development. If you
want to distribute your application to end users, you’ll need to return to the Developer
Portal, generate a different set of profiles, and rebuild your application, signing it this
time with your new distribution profile rather than the development profile you have
used thus far.

The different provisioning profiles are used for different purposes. The
development profile you generated in Chapter 2 is intended for devel-
opment and your own devices. The ad hoc distribution profile is inten-
ded for alpha and beta testing, while the App Store distribution profile
is intended for distributing your final build to the iTunes App Store.

Ad Hoc Distribution
Ad hoc builds of your application are used to distribute your application outside your
own development environment, and are intended to allow you to distribute your
application to beta testers. In the same way you registered your iPhone or iPod touch
for development, you must register all of the devices onto which you intend to distribute
your application using an ad hoc build. You can register up to 100 devices per year in
the iPhone Program Portal. This is a firm limit; deleting already registered devices will
not allow you to add further devices.

Normally when you distribute applications via the ad hoc method, no
application artwork is displayed when the user looks at your application
inside the iTunes interface. However, if you place a copy of the 512×512-
pixel PNG of your icon in your application bundle and name it
iTunesArtwork without any file extension, this will be used by iTunes.

Building and Signing | 233

www.it-ebooks.info

http://www.it-ebooks.info/

To deploy your application to your users via the ad hoc method, you need to create a
distribution certificate, register any devices you plan to use, and create an ad hoc pro-
visioning profile in the iPhone Developer Program Portal.

Obtaining a distribution certificate

Just as in Chapter 2 when we dealt with development, the first thing you need is a
distribution certificate, and to obtain that you need to generate a certificate-signing
request (CSR) using the Keychain Access application:

1. As you did for the CSR you generated for the development certificate (see “Creating
a Development Certificate” on page 12 in Chapter 2), launch the Keychain Access
application.

2. Select Keychain Access→Preferences from the menu. Go to the Certificates prefer-
ence pane to confirm that the Online Certificate Status Protocol (OCSP) and Cer-
tificate Revocation List (CRL) options are turned off.

3. Select Keychain Access→Certificate Assistant→Request a Certificate from a Certif-
icate Authority from the Keychain Access menu, and enter the email address you
selected as your Apple ID during the sign-up process and your name. Click the
“Saved to disk” radio button, check the “Let me specify key pair information”
checkbox, and click Continue. You’ll be prompted for a filename for your certifi-
cate request.

4. Accept the defaults (a key size of 2,048 bits using the RSA algorithm) and click
Continue.

The application will proceed to generate a CSR file and save it to disk.

In the iPhone Developer Program Portal (sign in to http://developer.apple.com/iphone
and look for the program portal link), click on the Certificates link and in the Distri-
bution tab click Request Certificate (if you already have a certificate, this option will
be unavailable as you need only one). Follow the instructions that appear, and upload
your CSR to the portal when asked.

If you joined the development program as an individual, you need to approve the sign-
ing request (in the Distribution tab of the Certificates section of the portal) before
proceeding to download the new certificate. If you are part of a team, the nominated
development team administrator needs to do this. After the request is approved, you
may need to click on the Distribution tab to refresh the page. When you see a Download
button, click it to save the certificate to disk.

Once the certificate file has downloaded, double-click it to install it into your Mac OS
X login keychain, as shown in Figure 9-8.

234 | Chapter 9: Distributing Your Application

www.it-ebooks.info

http://developer.apple.com/iphone
http://www.it-ebooks.info/

Figure 9-8. The Keychain Access application showing the newly installed distribution certificate
needed by Xcode for ad hoc or App Store distribution

Registering devices

Before you create the provisioning profile, you’ll need to register the devices you want
the profile to support. To do this you’ll need the unique device identifier (UDID) of all
of these devices. Once you have the device identifiers, you need to add your users’
devices in the same way you added your own development device in “Getting the UDID
of Your Development Device” on page 14 in Chapter 2.

In the Program Portal, click Devices, select the Manage tab, and click Add Devices.
Enter a device name in the appropriate box and the UDID in the box labeled Device
ID, and click the Submit button. (You can click the + button to add more rows so that
you can add several devices at once.) You have now registered the device; you need to
do this for all of the devices to which you intend to distribute ad hoc builds.

Creating a provisioning profile

Now you’re ready to create a mobile provisioning profile. Go to the Provisioning section
of the iPhone Developer Program Portal, select the Distribution tab, and click New
Profile.

Enter a profile name; you may be creating a number of ad hoc profiles, so naming your
first distribution profile “Ad-hoc Distribution Profile” probably isn’t a great idea. You
may want to name it after the application you’re distributing, so perhaps “City Guide
Beta Test Profile” would be a good choice for distributing a beta of the City Guide
application to testers.

Building and Signing | 235

www.it-ebooks.info

http://www.it-ebooks.info/

Next, select the App ID you used for the application you’re going to distribute, and
then select all of the devices for which this profile will be valid, as shown in Figure 9-9.

Figure 9-9. Creating an ad hoc provisioning profile

Click Submit to generate the new mobile provisioning profile that you’ll use to dis-
tribute the application to your beta testers. The status will appear as pending; click the
Distribution tab to reload it until it is no longer pending. When the profile is ready,
click the Download button and download the provisioning profile to your Mac. Now
drag the provisioning file onto the Xcode icon in the dock to make it available to the
development environment.

Building your application for ad hoc distribution

Let’s make an ad hoc build of the City Guide application. Double-click the project icon
at the top of the Group & Files pane and select the Configurations tab. Select the Release
configuration in the main pane, and click the Duplicate button located at the bottom
left of the configuration list. Name the duplicate configuration “Ad-hoc”, as shown in
Figure 9-10.

Return to the main Xcode window and use the Overview drop down to set the active
configuration to be the new ad hoc configuration, and the active SDK to be the iPhone
device rather than iPhone Simulator.

Now, in the Groups & Files pane of the Xcode interface, right-click on the Resources
group and select Add→New File. Choose Code Signing and select an Entitlement (see
Figure 9-11). Click Next, and name the file “dist.plist” when prompted. Click Finish.

236 | Chapter 9: Distributing Your Application

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 9-11. Adding the ad hoc distribution plist file to your project

In the Groups & Files pane, click on the dist.plist file and (very important) uncheck the
get-task-allow Boolean property in the editor window, as shown in Figure 9-12. This
step is necessary to turn off the ability for other processes (such as the debugger) to
attach to your application, as this is disallowed by distribution profiles.

Figure 9-10. Creating an ad hoc configuration in the Xcode Project Info window

Building and Signing | 237

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 9-12. Unchecking the get-task-allow flag in the dist.plist file

Now, double-click on the project icon at the top of the Groups & Files pane to reopen
the Project Info window. Click the Build tab and scroll down to the Code Signing
section. Double-click on the Code Signing Entitlements value field, type dist.plist in
the entitlements list, and click OK. Now click on the menu to the right of the Code
Signing Identity→Any iPhone OS Device line and select the iPhone Distribution profile.
Xcode should match this against the City Guide Beta Test profile we installed earlier,
as shown in Figure 9-13.

Close the Project Info window. Before building your application, open the CityGuide-
Info.plist file and make sure the Bundle Identifier in your Info.plist file matches the one
used to create the ad hoc mobile provisioning profile. See “Putting the Application on
Your iPhone” on page 37 in Chapter 3 if you’re unsure about this part. If you’ve been
able to deploy your application onto your iPhone or iPod touch and you generated a
wildcard app ID earlier, you shouldn’t have to change anything.

Now select Build→Build from the Xcode menu to build, but not to deploy, your appli-
cation. You may be prompted to allow Xcode to access your private key by the Keychain
application; you must permit the access to build the application.

Distributing an ad hoc build

Once you’ve made your build, go to the Products group in the Groups & Files pane in
the Xcode interface and double-click to open the group if it is not already open. Inside
you should find a single file called CityGuide.app. Right-click on this file and select

238 | Chapter 9: Distributing Your Application

www.it-ebooks.info

http://www.it-ebooks.info/

Reveal in Finder to open a Finder window in the directory containing the application
bundle.

Copy the application bundle file onto your desktop and create a ZIP file containing
both it and the ad hoc mobile provisioning profile you created earlier. This ZIP file is
your ad hoc build and can be distributed directly to your users.

Users receiving an ad hoc build should follow these steps:

1. Plug their iPhone or iPod touch into their Mac.

2. Ensure that iTunes is running and can see their device.

3. Unzip the distribution archive file.

4. Drag the provisioning profile onto the iTunes icon in the dock.

5. Drag the application bundle file onto the iTunes icon in the dock.

If the user checks the Applications section of his iTunes library, he should now be able
to see the new ("Ad-hoc”) application, and he can install it onto his iPhone or iPod
touch in the normal way by syncing his device with iTunes.

Figure 9-13. Choosing the iPhone Distribution profile

Building and Signing | 239

www.it-ebooks.info

http://www.it-ebooks.info/

Developer-to-Developer Distribution
Apple intended ad hoc distribution to be a way for you to distribute your software to
beta testers. However, developers have used it extensively for other purposes, including
bypassing the App Store entirely and selling directly to the consumer (a somewhat
torturous process).

If your intended end user is another developer, you can vastly simplify the ad hoc
distribution process. Just create a normal development build, as though you were going
to deploy the code to your own device, and send a copy of the binary to your colleague.
He can then re-sign the binary with his own developer certificate using the Xcode com-
mand line codesign utility:

#! /bin/bash
export CODESIGN_ALLOCATE=/Developer/Platforms/iPhoneOS.platform\
/Developer/usr/bin/codesign_allocate
codesign -f -s "iPhone Developer" $1.app

Once he has re-signed the binary, he can use the Xcode Organizer window to install it
onto his device. In the Applications section of the Summary tab, he should click the +
symbol and select the binary. Xcode will then install it onto his iPhone or iPod touch.

App Store Distribution
Making a build of your application to submit to the App Store is similar to making an
ad hoc build, and you’ll use the same distribution certificate you created for the ad hoc
build earlier in the chapter. However, you have to return to the iPhone Program Portal
to generate a new distribution provisioning profile.

Open the iPhone Developer Program Portal in a browser (start at http://developer.apple
.com/iphone/ and follow the links to the Program Portal), and in the Provisioning sec-
tion, select the Distribution tab and click New Profile. Enter a profile name; you’ll need
only one App Store profile, so unlike the ad hoc profile, a good choice might be “App
Store Distribution Profile”.

Most developers use one (wildcarded) App Store distribution profile for
all of their applications (see “Putting the Application on Your
iPhone” on page 37 in Chapter 3). The only reason you would need to
use a separate profile for your application is if it makes use of In-App
Purchase or Push Notifications.

Finally, select the App ID you used for the application you’re going to distribute; since
this is an App Store provisioning profile, there is no need to select devices this time
around.

240 | Chapter 9: Distributing Your Application

www.it-ebooks.info

http://developer.apple.com/iphone/
http://developer.apple.com/iphone/
http://www.it-ebooks.info/

Click Submit to generate the new mobile provisioning profile. The status will appear
as pending; click the Distribution tab to reload it until it is no longer pending. When
the profile is ready, click the Download button and download the provisioning profile
to your Mac. Drag the provisioning file onto the Xcode icon in the dock to make it
available to the development environment.

Building your application for App Store distribution

Let’s make an App Store build of our City Guide application. Double-click on the
project icon at the top of the Groups & Files pane and select the Configurations tab.
Select the Release configuration in the main pane, and click the Duplicate button lo-
cated at the bottom left of the configuration list, just as you did for the ad hoc build,
but this time around name the duplicate configuration “Distribution”.

Return to the main Xcode window and use the Overview drop down to set the active
configuration to be the new distribution configuration, and the active SDK to be the
iPhone device rather than iPhone Simulator.

Now double-click on the project icon at the top of the Groups & Files pane to reopen
the Project Info window. Open the Build tab and scroll down to the Code Signing
section. Click on the menu to the right of the Code Signing Identity→Any iPhone OS
Device line and select the App Store distribution profile. Xcode will not automatically
match this profile by default as it did with your developer profile. You must make this
selection manually, as shown in Figure 9-14.

Close the Project Info window. Before building your application, check the Info.plist
file for your app (such as CityGuide-Info.plist) and make sure the Bundle Identifier
matches the one used to create the App Store provisioning profile. Now select
Build→Build from the Xcode menu to build, but not to deploy, your application. Unless
you’ve already clicked Always Allow on a previous build, you’ll be prompted to grant
access to your keychain. You must allow this access.

Once you’ve made your build, go to the Products group in the Groups & Files pane in
the Xcode interface and double-click to open the group. Inside you should find a single
file called CityGuide.app. Right-click on this file and select Reveal in Finder to open a
Finder window in the directory containing the application bundle. Copy the application
bundle file onto your desktop. It’s this file that you’d upload to the iTunes Connect
site to release it onto the App Store.

Submitting to the App Store

While I’ve walked you through building a version of the City Guide
application that is ready to be submitted to the App Store, you should
not actually go ahead and submit it. The App Store might start to look
a bit odd if every reader of this book did that.

Submitting to the App Store | 241

www.it-ebooks.info

http://www.it-ebooks.info/

Log in to the iTunes Connect site, and click the Manage Your Applications button and
then the Add New Application button.

If this is the first time you’ve submitted an application to iTunes Connect, you’ll be
asked what primary language you will be using to enter your applications to the store.
You’ll then be asked what company or developer name you want displayed on the App
Store for all your applications. Both your primary language and your company name
cannot be changed, so choose carefully. You won’t be asked these questions again the
next time you submit an application to the store.

You’ll then be asked whether your application uses encryption. If your application
includes any encryption code, you may have to fill out some forms to comply with U.S.
commercial encryption export controls.

Next, you’ll be asked to provide information about your application:

Application name and application description
The application display name and description will appear as is on the iTunes App
Store. You do not have to use the same name for the application as you used for
your project binary or bundle display name. However, it should be related to the
display name, or this might form grounds for rejection by the review team. You
should try to keep your description fairly short so that your application screenshots

Figure 9-14. Choosing the App Store distribution profile manually

242 | Chapter 9: Distributing Your Application

www.it-ebooks.info

http://itunesconnect.apple.com/
http://www.it-ebooks.info/

will be “above the fold” (the part of the description the user will see without having
to scroll) if the user is browsing the store from her iPhone or iPod touch.

Device requirements
At the time of this writing, the choices were iPhone only, iPhone & iPod touch
(2nd Generation), and iPhone and iPod touch. It’s best to select the least restrictive
requirements you can to increase the number of possible users of your application.

Primary and secondary category
These are the App Store categories that best describe your application. You need
only select the primary category.

Copyright, version, and SKU number
The copyright and version number entries are fairly self-explanatory. For copy-
right, you should list the copyright year and copyright holder’s name. For the ver-
sion, provide the version number of the app (1.0 is a good place to start). The SKU
(or stock-keeping unit) number must be a unique alphanumeric identifier that you
choose for this product. Bear in mind that this SKU cannot be changed at any point,
even with the upload of a new binary (and version) of the application, so while you
can choose just about anything, it should be fairly descriptive but not version-
specific.

Keywords
Application keywords are associated with the application binary and can be edited
only when uploading a new binary, so think carefully about your choice of key-
words for your application. Separate multiple keywords with commas, not spaces.

Application and support URLs
Again, this is fairly self-explanatory. These are two URLs which can be identical;
they point to support information about your application. Applications without
associated URLs, or with URLs pointing to blank pages, will not be approved. Your
support information should be in place before you upload your binary to iTunes
Connect for review.

Support email address
This is the email address that will be published to iTunes as the support address
when your application is approved. It would be a sensible move to create a separate
email address for each of your applications, rather than use a personal address. If
your application becomes popular, you will receive a lot of email.

Demo account
If your application needs an account on an online service to be fully operative,
supply an account name and password here. If you don’t, the review team will
summarily reject your application.

After entering this metadata, you’ll be asked to rate your application under certain
categories: Cartoon or Fantasy Violence; Realistic Violence; Sexual Content or Nudity;
Profanity or Crude Humor; Alcohol, Tobacco or Drug User or References; Mature/
Suggestive Themes; Simulated Gambling; Horror/Fear Themes; Prolonged Graphic or

Submitting to the App Store | 243

www.it-ebooks.info

http://www.it-ebooks.info/

Sadistic Realistic Violence; and Graphic Sexual Content and Nudity. This will generate
your App Rating (4+, 9+, 12+, or 17+) that will allow users to filter your application
using the parental controls inside iTunes. If you don’t rate your application realistically,
the review team may reject it during the review process.

You’ll then be asked to upload your application binary (which you must first compress
into a ZIP file by right-clicking on your application bundle file and selecting Compress),
your large 512×512-pixel icon image, and a number of screenshots. Your screenshots
will be displayed on the App Store with your application, and each must be a JPEG or
TIFF file that is 320×480, 480×320, 320×460, or 480×300 pixels in size.

Once you have uploaded all the requested files, you will be asked to set the price tier
for your application, and the availability date. Your application will be made available
on the store on this date, or whenever it leaves the review process and is approved by
the App Store review team, whichever is later.

The availability date, like all application metadata, applies to all versions
of your application. If you later upload an update for your application
and change the availability date to a date in the future, your current
version will be removed from the App Store until that date arrives.

After setting the price, you will be offered the opportunity to localize all of the metadata
you entered into several different languages, including Dutch, German, Italian, Japa-
nese, Chinese, and several different dialects of English and French. You are not required
to enter any localization for your application metadata, but if you are selling worldwide
you may have better sales if both your application and its store entry are localized.

Finally, before posting your application for review by the App Store review team, you
will be given the opportunity to review all of the information you have entered. If you
find any mistakes, you can click on the tabs across the top to return to that stage of the
process.

The App Store Resource Center
If you’re confused about any aspect of distribution, you should make your way to the
App Store Resource Center. This site walks you through the process of preparing your
application for submission, the App Store approval process itself, and how to manage
your applications on the store once they’re live.

Reasons for Rejection
The App Store review process is somewhat opaque, but generally, if your application
is rejected, the review team will cite the specific section of the iPhone Developer
Program License Agreement that it violates in the rejection email. If you’re careful, you

244 | Chapter 9: Distributing Your Application

www.it-ebooks.info

http://developer.apple.com/iphone/appstore/
http://www.it-ebooks.info/

can avoid most of the common pitfalls and save yourself, and the review team, a lot of
time.

Copies of the iPhone Developer Program License Agreement, the agree-
ment you signed with Apple to become an iPhone developer, and the
iPhone Human Interface Guidelines are available for download from
the App Store Resource Center in the App Store Approval Process sec-
tion at http://developer.apple.com/iphone/appstore.

Some of the more common reasons for rejection concern the following:

Version number
Applications submitted with version numbers less than 1.0, or applications tagged
as “beta” or “alpha,” will be summarily rejected by the review team. Additionally,
if there is any inconsistency in versioning—for instance, the version number in
your application’s About dialog does not match the version number in your
Info.plist file (and the number you provided to iTunes Connect)—your application
may be rejected.

Icons
The artwork for your 57×57-pixel icon must be identical to your 512×512 icon.
Additionally, if you are uploading a free “lite” version of your application as well
as a premium “pro” version, the application icons cannot be identical between the
two versions.

Artwork
Using Apple’s own graphics inside your application—for instance, logos or an
image of an iPhone or iPod touch—is usually grounds for rejection.

Copyright material
Apple is extremely wary of allowing applications to make use of material (e.g.,
images, audio, and other media) that you do not have permission to use. Using
material that might violate a trademark is similarly suspect.

Human Interface Guidelines
Violating the Human Interface Guidelines—for instance, using standard button
icons for a nonstandard purpose, such as the Refresh, Organize, Trash, Reply, and
Compose buttons—could be grounds for rejection.

Private frameworks
Applications published to the App Store are not allowed to link to private or third-
party frameworks. Submitting applications for review that do link to such frame-
works is an easy way to get your application rejected. Linking to third-party static
libraries is a gray area, but is usually acceptable.

Existing functionality
A large number of applications have been rejected for duplicating existing func-
tionality of a built-in app; applications that make extensive use of web browsers

Reasons for Rejection | 245

www.it-ebooks.info

http://developer.apple.com/iphone/appstore
http://www.it-ebooks.info/

are particularly vulnerable to this accusation. Other obvious candidates are email
clients and music player applications.

Table views
Improper handling of table view cells when the application has a table view in edit
mode can be grounds for rejection, as can not deselecting table view cells appro-
priately after selecting them to perform some action.

Network reachability
Not testing for the presence of a network connection or not handling the loss of
network connectivity correctly (and informing the user) is a common cause for
rejection.

Bandwidth limitations
If your application makes use of large amounts of bandwidth, you need to make
sure your current network connection is over the cellular network. Transferring
large amounts of data over the cellular network can (sometimes) be grounds for
rejection. So, if your application does that, you should disable, or throttle, data
transfer when the device is on the cellular network.

Keyboard type
You should ensure that you are using the correct keyboard type when prompting
for user input; using an inappropriate keyboard is usually grounds for rejection
(e.g., using the keyboard designed to enter phone numbers for other purposes).

OS compatibility
If you claim that your application will run on OS 3.0 and later, you must ensure
that it really does so. Apple will test your application with all of the versions of the
OS between your minimum specified version and the current release. If the review
team discovers that your application does not function correctly with a specific
version of the OS, they will normally reject it. Unfortunately, it’s fairly rare for them
to tell you in which version of the OS the bug manifested. This can lead to the
unfortunate situation where you cannot duplicate the bug since you and the re-
viewer are testing the application under different OS revisions.

Description
Do not include the price in your application description, as part of your icon, or
anywhere in the UI. According to Apple, this may “potentially confuse users” as
the text cannot be localized to all markets.

Crippled functionality
If you provide a free “lite” version of your application, it cannot have crippled
functionality (e.g., obviously disabled buttons or menu items). It also cannot di-
rectly refer to the paid “pro” version of the application. Free or “lite” versions of
an application are acceptable, but the application must be a fully functional ap-
plication in itself and cannot reference features that are not implemented.

246 | Chapter 9: Distributing Your Application

www.it-ebooks.info

http://www.it-ebooks.info/

Minimal user functionality
If your application doesn’t actually do very much, it might get rejected. However,
there are numerous cases where applications that don’t do very much have been
accepted (e.g., flashlight applications).

Does not work as advertised
Applications that do not work as described in their application descriptions will
be summarily rejected. You should therefore be careful when writing your appli-
cation description when submitting your application to iTunes Connect.

Reasons for Rejection | 247

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10

Using Sensors

Mobile phones aren’t just for making phone calls anymore. The iPhone, like a lot of
high-end smartphones these days, comes with a number of sensors: camera, acceler-
ometer, GPS module, and digital compass. We’re entering a period of change: more
and more users expect these sensors to be integrated into the “application experience.”
If your application can make use of them, it probably should.

Hardware Support
While the iPhone is almost unique among mobile platforms in guaranteeing that your
code will run on all of the current devices, there is some variation in available hardware
between the various models.

Determining Available Hardware Support
Table 10-1 lists the hardware differences between the devices. Because your app will
likely support multiple devices, you’ll need to write code to check which features are
supported and adjust your application’s behavior as appropriate.

Table 10-1. Hardware support in various iPhone and iPod touch models

Hardware
features

Original
iPhone

iPhone 3G
iPhone
3GS

First-
generation
iPod touch

Second-
generation
iPod touch

Third-
generation
iPod touch

Cellular x x x

WiFi x x x x x x

Bluetooth x x x x x

Speaker x x x x x

Audio-in x x x x x

Accelerometer x x x x x x

Magnetometer x

249

www.it-ebooks.info

http://www.it-ebooks.info/

Hardware
features

Original
iPhone

iPhone 3G
iPhone
3GS

First-
generation
iPod touch

Second-
generation
iPod touch

Third-
generation
iPod touch

GPS x x

Proximity sensor x x x

Camera x x x

Video capture x

Vibration x x x

Network availability

We covered Apple’s Reachability code in detail in “Apple’s Reachability
Class” on page 145 in Chapter 7. We can easily determine whether the network is
reachable, and whether we are using the wireless or WWAN interface:

Reachability *reach = [
 [Reachability reachabilityForInternetConnection] retain];
NetworkStatus status = [reach currentReachabilityStatus];

This call will return a network status: NotReachable, ReachableViaWiFi, or Reacha
bleViaWWAN.

Camera availability

We cover the camera in detail later in this chapter. However, it is simple to determine
whether a camera is present in the device:

BOOL available = [UIImagePickerController
 isSourceTypeAvailable:UIImagePickerControllerSourceTypeCamera];

Once you have determined that a camera is present, you can inquire whether it supports
video by making a call to determine the available media types the camera supports:

NSArray *media = [UIImagePickerController availableMediaTypesForSourceType:
 UIImagePickerControllerSourceTypeCamera];

If the kUTTypeMovie media type is returned as part of the array, the camera will support
video recording.

Audio input availability

You can poll whether audio input is available using the AVAudioSession singleton class
by checking the inputIsAvailable class property:

AVAudioSession *audioSession = [AVAudioSession sharedInstance];
BOOL audioAvailable = audioSession.inputIsAvailable;

250 | Chapter 10: Using Sensors

www.it-ebooks.info

http://www.it-ebooks.info/

You will need to add the AVFoundation.Framework (right-click or
Ctrl-click on the Frameworks folder in Xcode and choose Add→Existing
Frameworks). You’ll also need to import the header (put this in your
declaration if you plan to implement the AVAudioSessionDelegate pro-
tocol, discussed shortly):

#import <AVFoundation/AVFoundation.h>

You can also be notified of any changes in the availability of audio input (e.g., a second-
generation iPod touch user has plugged in headphones with microphone capabilities).
First, nominate your class as a delegate:

audioSession.delegate = self;

Declare it as implementing the AVAudioSessionDelegate protocol in the declaration:

@interface YourAppDelegate : NSObject <UIApplicationDelegate,
 AVAudioSessionDelegate >

Then implement inputIsAvailableChanged: in the implementation:

- (void)inputIsAvailableChanged:(BOOL)audioAvailable {
 NSLog(@"Audio availability has changed");
}

GPS availability

I’m going to cover the Core Location framework, and GPS, later in the chapter. How-
ever, the short answer to a fairly commonly asked question is that, unfortunately, the
Core Location framework does not provide any way to get direct information about
the availability of specific hardware.

While you cannot check for the availability of GPS using Core Location, you can require
the presence of GPS hardware for your application to load. I will discuss this in the next
section.

Setting Required Hardware Capabilities
If your application requires specific hardware features in order to run, you can add a
list of required capabilities to your application’s Info.plist file. Your application will not
start unless those capabilities are present on the device.

Later in the chapter we’ll modify the Weather application to make use of the Core
Location framework to determine current position, so let’s modify it now to make sure
this capability is available.

Hardware Support | 251

www.it-ebooks.info

http://www.it-ebooks.info/

You may want to make a copy of the Weather application before mod-
ifying, as we have done previously. Navigate to where you saved the
project and make a copy of the project folder, and then rename it.
Then open the new (duplicate) project inside Xcode and use the
Project→Rename tool to rename the project.

Open the Weather application in Xcode, open the Weather-Info.plist file in the Xcode
editor, and click on the bottommost entry. A button with a plus sign (+) on it will
appear to the righthand side of the key-value pair table. Click on this button to add a
new row to the table; then scroll down the list of possible options and select “Required
device capabilities” (the UIRequiredDeviceCapabilities key) as shown Figure 10-1. This
will add an (empty) array to the .plist file. If you add “location-services” (see Fig-
ure 10-2) as Item 0 of this array (some versions of Xcode may label the first item in the
array Item 1), your application will no longer start if such services are unavailable. If
you want to add further entries, select Item 0 and click the plus button to the righthand
side of the table.

Figure 10-1. Setting the “Required device capabilities” key

The allowed values for the keys are telephony, sms, still-camera, auto-focus-camera,
video-camera, wifi, accelerometer, location-services, gps, magnetometer, microphone,
opengles-1, opengles-2, armv6, armv7, and peer-peer. A full description of the possible
keys is available in the Device Support section of the iPhone Application Programming
Guide available from the iPhone Dev Center.

252 | Chapter 10: Using Sensors

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 10-2. Adding the location-services item to “Required device capabilities”

Using the Camera
We looked at the image picker view controller in Chapter 6, where we used it to add
pictures to our City Guide application using our AddCityController class. We have to
change only one line in our code from Chapter 6 to make our City Guide application
use the camera instead of the saved photo album.

If you open the CityGuide project in Xcode and look at the viewDidLoad: method in the
AddCityController class, you’ll see that we set the source of the image picker controller
to be the photo album:

pickerController.sourceType =
 UIImagePickerControllerSourceTypeSavedPhotosAlbum;

Changing the source to UIImagePickerControllerSourceTypeCamera will mean that
when you call presentModalViewController:, which presents the UIImagePickerControl
ler, the camera interface rather than the photo album will be presented to the user,
allowing him to take a new picture.

If you want to enable video, you need to add the relevant media type to the array
indicating the media types to be accessed by the picker. By default, this array contains
only the image media type. The following code should determine whether your device
supports a camera, and if it does, it will add all of the available media types (including
video on the iPhone 3GS) to the media types array. If there is no camera present, the
source will be set to the photo album as before:

if ([UIImagePickerController
 isSourceTypeAvailable:UIImagePickerControllerSourceTypeCamera])
{
 pickerController.sourceType = UIImagePickerControllerSourceTypeCamera;

Using the Camera | 253

www.it-ebooks.info

http://www.it-ebooks.info/

 NSArray* mediaTypes =
 [UIImagePickerController availableMediaTypesForSourceType:
 UIImagePickerControllerSourceTypeCamera];
 pickerController.mediaTypes = mediaTypes;
} else {
 pickerController.sourceType =
 UIImagePickerControllerSourceTypeSavedPhotosAlbum;
 pickerController.allowsEditing = YES;
}

The Core Location Framework
The Core Location framework is an abstraction layer in front of several different meth-
ods to find the user’s location (and, by extrapolation, her speed and course). It can
provide the latitude, longitude, and altitude of the device (along with the level of ac-
curacy to which this is known). There are three levels of accuracy:

• The least accurate level uses the cell network to locate the user (the process is
similar to triangulation, but more complex). This can quickly provide a position
to around 12 km accuracy, which can be reduced to 1–3 km after some time de-
pending on the tower density at your current location.

• The next accuracy level is obtained by utilizing Skyhook Wireless’s WiFi-based
positioning system. This is much more precise, giving a position to approximately
100 m. However, it depends on the user being in range of a known wireless hotspot.

• The highest level of accuracy is obtained by using GPS hardware, which should
provide a position to less than 40 m.

On the iPod touch, the user’s location is derived solely from WiFi po-
sitioning. The original iPhone will use WiFi and cell tower triangulation,
and on the iPhone 3G and 3GS it will also make use of the built-in GPS
hardware.

The actual method used to determine the user’s location is abstracted away from both
the user and the developer. The only control the developer has over the chosen method
is by requesting a certain level of accuracy, although the actual accuracy achieved is
not guaranteed. Further, the battery power consumed and the time to calculate the
position increase with increasing accuracy.

Some users may choose to explicitly disable reporting of their position.
You should therefore always check to see whether location services are
enabled before attempting to turn on these services. This will avoid un-
necessary prompting from your application.

254 | Chapter 10: Using Sensors

www.it-ebooks.info

http://www.it-ebooks.info/

The Core Location framework is implemented using the CLLocationManager class. The
following code will create an instance of this class, and from then on will send location
update messages to the designated delegate class:

CLLocationManager *locationManager = [[CLLocationManager alloc] init];
locationManager.delegate = self;
if(locationManager.locationServicesEnabled) {
 [locationManager startUpdatingLocation];
} else {
 NSLog(@"Location services not enabled.");
}

To use this code, you will need to add the Core Location framework. In
Groups & Files, right-click or Ctrl-click on Frameworks and select
Add→Existing Frameworks. Add CoreLocation. You will also need to
declare your class as implementing the CLLocationManagerDelegate pro-
tocol and import CoreLocation in your declaration or implementation
with the following code:

#import <CoreLocation/CoreLocation.h>

We can filter these location update messages based on a distance filter. Changes in
position of less than this amount will not generate an update message to the delegate:

locationManager.distanceFilter = 1000; // 1km

We can also set a desired level of accuracy; this will determine the location method(s)
used by the Core Location framework to determine the user’s location:

locationManager.desiredAccuracy = kCLLocationAccuracyKilometer;

The CLLocationManagerDelegate protocol offers two methods. The first is called when
a location update occurs:

- (void)locationManager:(CLLocationManager *)manager
 didUpdateToLocation:(CLLocation *)newLocation
 fromLocation:(CLLocation *)oldLocation
{
 NSLog(@"Moved from %@ to %@", oldLocation, newLocation);
}

The second is called when an error occurs:

- (void)locationManager:(CLLocationManager *)manager
 didFailWithError:(NSError *)error {
 NSLog(@"Received Core Location error %@", error);
 [manager stopUpdatingLocation];
}

If the location manager is not able to ascertain the user’s location immediately, it reports
a kCLErrorLocationUnknown error and keeps trying. In most cases, you can choose to
ignore the error and wait for a new event. However, if the user denies your application

The Core Location Framework | 255

www.it-ebooks.info

http://www.it-ebooks.info/

access to the location service, the manager will report a kCLErrorDenied error. Upon
receiving such an error, you should stop the location manager.

Location-Dependent Weather
In Chapter 7 we built a simple Weather application, but it would be much better if the
application gave us weather information for our current location. We can use the Core
Location framework to retrieve the user’s latitude and longitude. However, the Google
Weather Service, which we used to back our Weather application, takes only city
names, not latitude or longitude arguments.

There are several ways around this problem. For instance, the MapKit framework,
which we’ll meet later in the book, offers reverse geocoding capabilities (which turn
coordinates into postal addresses). However, for this example, I’m going to make use
of one of the many web services offered by the GeoNames.org site to carry our reverse
geocoding to retrieve the nearest city from the latitude and longitude returned by the
Core Location framework.

Using the GeoNames reverse geocoding service

One of the RESTful web services offered by GeoNames.org will return an XML or
JSON document listing the nearest populated place using reverse geocoding. Requests
to the service take the form http://ws.geonames.org/findNearbyPlaceName?
lat=<XX.X>&lng=<XX.X> if you want an XML document returned, or http://ws.geo-
names.org/findNearbyPlaceNameJSON?lat=<XX.X>&lng=<XX.X> if you prefer a JSON
document. There are several optional parameters: radius (in km), max (maximum
number of rows returned), and style (SHORT, MEDIUM, LONG, and FULL).

Passing the longitude and latitude of Cupertino, California, which is the location re-
turned by Core Location in all cases for iPhone Simulator, the JSON service would
return the following JSON document:

{
 "geonames":[
 {
 "countryName":"United States",
 "adminCode1":"CA",
 "fclName":"city, village,...",
 "countryCode":"US",
 "lng":-122.0321823,
 "fcodeName":"populated place",
 "distance":"0.9749",
 "fcl":"P",
 "name":"Cupertino",
 "fcode":"PPL",
 "geonameId":5341145,
 "lat":37.3229978,
 "population":50934,
 "adminName1":"California"
 }

256 | Chapter 10: Using Sensors

www.it-ebooks.info

http://www.geonames.org/
http://www.geonames.org/
http://www.it-ebooks.info/

]
}

Modifying the Weather application

Let’s modify our Weather application to make use of Core Location and (optionally)
give us the weather where we are, rather than just for a hardwired single location. Open
the Weather project in Xcode and click on the WeatherAppDelegate.h interface file to
open it in the Xcode editor.

We’re going to use the application delegate to manage the CLLocationManager. I’ve
highlighted the changes you need to make to this file in bold:

#import <CoreLocation/CoreLocation.h>

@class MainViewController;

@interface WeatherAppDelegate : NSObject
 <UIApplicationDelegate, CLLocationManagerDelegate>
{
 UIWindow *window;
 MainViewController *mainViewController;

 BOOL updateLocation;
 CLLocationManager *locationManager;
}

@property (nonatomic, retain) IBOutlet UIWindow *window;
@property (nonatomic, retain) MainViewController *mainViewController;
@property (nonatomic) BOOL updateLocation;
@property (nonatomic, retain) CLLocationManager *locationManager;

@end

We declare that the application delegate is also a CLLocationManager delegate.

We declare a Boolean variable to indicate whether we’re currently supposed to be
monitoring the device’s location.

We declare an instance of the CLLocationManager.

You will also need to add the Core Location framework to the project. In Groups &
Files, right-click or Ctrl-click on Frameworks and select Add→Existing Frameworks.
Select CoreLocation and click Add.

In the corresponding implementation file (WeatherAppDelegate.m), we first need to
synthesize the new variables we declared in the interface file:

@synthesize updateLocation;
@synthesize locationManager;

After that, add the code shown in bold to the applicationDidFinishLaunching: method.
This creates an instance of the CLLocationManager class and sets the delegate for the
class to be the current class (the application delegate).

The Core Location Framework | 257

www.it-ebooks.info

http://www.it-ebooks.info/

- (void)applicationDidFinishLaunching:(UIApplication *)application {

 // Create instance of Main View controller
 MainViewController *aController =
 [[MainViewController alloc]
 initWithNibName:@"MainView" bundle:nil];
 self.mainViewController = aController;
 [aController release];

 // Create instance of LocationManager object
 self.locationManager =
 [[[CLLocationManager alloc] init] autorelease];
 self.locationManager.delegate = self;

 // Create instance of WeatherForecast object
 WeatherForecast *forecast = [[WeatherForecast alloc] init];
 self.mainViewController.forecast = forecast;
 [forecast release];

 // Set the main view
 mainViewController.view.frame = [UIScreen mainScreen].applicationFrame;
 [window addSubview:[mainViewController view]];
 [window makeKeyAndVisible];
}

This creates the CLLocationManager instance.

This sets the delegate for the instance to the current class.

Finally, we have to make sure the CLLocationManager instance is released in the
dealloc: method, and implement the two CLLocationManagerDelegate methods we’re
going to need. Make the changes shown in bold:

- (void)dealloc {
 [locationManager release];
 [mainViewController release];
 [window release];
 [super dealloc];
}

#pragma mark CLLocationManager Methods

- (void)locationManager:(CLLocationManager *)manager
 didUpdateToLocation:(CLLocation *)newLocation
 fromLocation:(CLLocation *)oldLocation {
 NSLog(@"Location: %@", [newLocation description]);
 if (newLocation != oldLocation) {
 // Add code here

 }
}

- (void)locationManager:(CLLocationManager *)manager
 didFailWithError:(NSError *)error {
 NSLog(@"Error: %@", [error description]);
}

258 | Chapter 10: Using Sensors

www.it-ebooks.info

http://www.it-ebooks.info/

This is the delegate method to handle changes in location.

This is the delegate method to handle any errors that occur.

We’re going to modify the (currently unused) flip side of the Weather application and
add a switch (UISwitch), similar to our Battery Monitor application from Chapter 6.
This will toggle whether our application should be updating its location. However, let’s
modify the FlipSideViewController interface file before we go to the NIB file, adding
both a switch and a switchThrown: interface builder action that we’ll connect to the
switch. I’ve also added a reference to the application delegate. Make the changes shown
in bold to FlipSideViewController.h:

@protocol FlipsideViewControllerDelegate;

@class WeatherAppDelegate;

@interface FlipsideViewController : UIViewController {
 id <FlipsideViewControllerDelegate> delegate;
 IBOutlet UISwitch *toggleSwitch;
 WeatherAppDelegate *appDelegate;
}

@property (nonatomic, assign) id <FlipsideViewControllerDelegate> delegate;

- (IBAction)done;
- (IBAction)switchThrown;

@end

In the corresponding implementation (FlipSideViewController.m), import both the
Core Location framework and the application delegate interface file:

#import <CoreLocation/CoreLocation.h>
#import "WeatherAppDelegate.h";

Then in the viewDidLoad: method, we need to populate the reference to the application
delegate and use the value of the updateLocation Boolean declared earlier to set the state
of the UISwitch. Add the lines shown in bold:

- (void)viewDidLoad {
 [super viewDidLoad];
 self.view.backgroundColor = [UIColor viewFlipsideBackgroundColor];

 appDelegate = (WeatherAppDelegate *)
 [[UIApplication sharedApplication] delegate];
 toggleSwitch.on = appDelegate.updateLocation;

}

In the done: method, which is called when the user clicks on the Done button to close
the flipside view, we must set the same updateLocation Boolean variable in the appli-
cation delegate to be that of the state of the switch. If the user has changed the switch
state on the flip side, it will now be reflected in the application delegate. Add the line
shown in bold:

The Core Location Framework | 259

www.it-ebooks.info

http://www.it-ebooks.info/

- (IBAction)done {
 appDelegate.updateLocation = toggleSwitch.on;
 [self.delegate flipsideViewControllerDidFinish:self];
}

Next, provide an implementation of the switchThrown: method that you’ll attach to the
UISwitch in Interface Builder:

-(IBAction)switchThrown {
 NSLog(@"Switch thrown");
 if (toggleSwitch.on) {
 [appDelegate.locationManager startUpdatingLocation];
 } else {
 [appDelegate.locationManager stopUpdatingLocation];
 }
}

Finally, remember to release the toggleSwitch inside the dealloc: method:

- (void)dealloc {
 [toggleSwitch release];
 [super dealloc];
}

Now let’s add that switch to the flipside view. Make sure you’ve saved all your changes
and then double-click on the FlipsideView.xib file to open it in Interface Builder. Drag
and drop a label (UILabel) and a switch (UISwitch) element from the Library window
into the Flipside View window. Position them and adjust the attributes (⌘-1) of the
label so that your layout looks like Figure 10-3.

Click File’s Owner, open the Connections Inspector (⌘-2), and connect the
toggleSwitch outlet to the UISwitch. Then connect the switchThrown: action to the
UISwitch’s Value Changed event. While you’re here, double-click on the navigation bar
title and change the text to “Preferences”. Save your changes; we’re done here.

We’ve reached a natural point to take a break and test the application. Save Flipside-
View.xib and return to Xcode. Then click the Build and Run button in the Xcode toolbar
to compile and deploy the Weather application into the simulator. Once it’s running,
click the Info button to go to the flip side of the application and toggle the switch. If
you look at the Debugger Console (Run→Console in the Xcode menu bar), you should
(after a small amount of time) see something that looks a lot like Figure 10-4.

iPhone Simulator will always report its location as being at Lat. +37.33168900, Long.
–122.03073100, corresponding to 1 Infinite Loop, Cupertino, CA.

Quit the simulator. Back in Xcode, click on the MainViewController.h interface file to
open it in the editor. Since we’re now going to have multiple locations, we need some-
where to store the name of the location that we’ll get back from the reverse geocoder.
So, add an NSString to MainViewController.h (somewhere inside the opening and clos-
ing curly braces after the @interface directive) to store the location:

NSString *location;

260 | Chapter 10: Using Sensors

www.it-ebooks.info

http://www.it-ebooks.info/

Then expose this and the UIActivityIndicator (we’re going to use that shortly) as
properties. Add the following just before the @end directive:

@property(nonatomic, retain) UIActivityIndicatorView *loadingActivityIndicator;
@property(nonatomic, retain) NSString *location;

Since we’ve declared location and loadingActivityIndicator as properties, go back to
the implementation file (MainViewController.m) and add these lines to synthesize those
properties:

@synthesize loadingActivityIndicator;
@synthesize location;

Then in the viewDidLoad: method, initialize the location string:

- (void)viewDidLoad {
 [super viewDidLoad];
 location = [[NSString alloc] init];
 [self refreshView:self];
}

Figure 10-3. Adding the UISwitch to the FlipsideView controller

The Core Location Framework | 261

www.it-ebooks.info

http://www.it-ebooks.info/

Make sure it is released in the dealloc: method:

- (void)dealloc {
 [location release];
 ... rest of the method not shown ...
}

Next, in the refreshView: method, check whether the app is monitoring the device’s
location so that you know whether to query the Google Weather Service with the de-
fault location (London, UK) or with the current location:

- (IBAction)refreshView:(id)sender {
 [loadingActivityIndicator startAnimating];

 WeatherAppDelegate *appDelegate =
 (WeatherAppDelegate *)[[UIApplication sharedApplication] delegate];
 if(appDelegate.updateLocation) {
 NSLog(@"updating for location = %@", self.location);
 [forecast queryService:self.location withParent:self];

 } else {
 [forecast queryService:@"London,UK" withParent:self];
 }

}

Since we’ve made use of the application delegate, we need to make sure we import it
into the MainViewController implementation. Add this line to the top of the file:

#import "WeatherAppDelegate.h"

Now we’re done with the view controller.

Figure 10-4. The Weather application reporting the current location (of iPhone Simulator) when the
flipside switch is thrown

262 | Chapter 10: Using Sensors

www.it-ebooks.info

http://www.it-ebooks.info/

What’s left to do? First, we need to build a class to query the GeoNames reverse
geocoder service, and then we need to pass the latitude and longitude to the reverse
geocoder service from the CLLocationManager delegate method locationManager:didUp
dateToLocation:fromLocation: in the application delegate.

Since we’re going to make use of the JSON service, we need to add the
JSON parser to our project in the same way we did in Chapter 8 for the
Twitter Trends application. See “Parsing JSON” on page 199 in Chap-
ter 8 for details on how to add the json-framework library to your project.

Right-click on the Other Sources group in the Groups & Files pane of the Xcode in-
terface and select Add→New Files. In the New File pop up, make sure Cocoa Touch
Class (under iPhone OS) is selected. Next, choose “Objective-C class”, a subclass of
NSObject, and click the Next button. Name the new class “FindNearbyPlace” when
prompted and click Finish.

Click on the FindNearbyPlace.h interface file and modify the template so that it looks
like the following code:

#import <Foundation/Foundation.h>

@class WeatherAppDelegate;

@interface FindNearbyPlace : NSObject {
 WeatherAppDelegate *appDelegate;
 NSMutableData *responseData;
 NSURL *theURL;
}

- (void)queryServiceWithLat:(NSString *)latitude
 andLong:(NSString *)longitude;

@end

Modify the FindNearbyPlace.m implementation file so that it looks like the following
code. You may recognize this code from Chapter 8; apart from the connectionDidFinish
Loading: method, it’s almost identical to the Trends API code we wrote for the Twitter
Trends application:

#import "WeatherAppDelegate.h"
#import "MainViewController.h"
#import "FindNearbyPlace.h"
#import "JSON/JSON.h"

@implementation FindNearbyPlace

- (void)queryServiceWithLat:(NSString *)latitude
 andLong:(NSString *)longitude
{

 appDelegate = (WeatherAppDelegate *)

The Core Location Framework | 263

www.it-ebooks.info

http://www.it-ebooks.info/

 [[UIApplication sharedApplication] delegate];
 responseData = [[NSMutableData data] retain];

 NSString *url = [NSString stringWithFormat:
 @"http://ws.geonames.org/findNearbyPlaceNameJSON?lat=%@&lng=%@",
 latitude, longitude];
 theURL = [[NSURL URLWithString:url] retain];
 NSURLRequest *request = [NSURLRequest requestWithURL:theURL];
 [[NSURLConnection alloc] initWithRequest:request delegate:self];

}

- (NSURLRequest *)connection:(NSURLConnection *)connection
 willSendRequest:(NSURLRequest *)request
 redirectResponse:(NSURLResponse *)redirectResponse
{
 [theURL autorelease];
 theURL = [[request URL] retain];
 return request;
}

- (void)connection:(NSURLConnection *)connection
 didReceiveResponse:(NSURLResponse *)response
{
 [responseData setLength:0];
}

- (void)connection:(NSURLConnection *)connection
 didReceiveData:(NSData *)data
{
 [responseData appendData:data];
}

- (void)connection:(NSURLConnection *)connection
 didFailWithError:(NSError *)error
{
 // Handle Error
}

- (void)connectionDidFinishLoading:(NSURLConnection *)connection {
 NSString *content =
 [[NSString alloc] initWithBytes:[responseData bytes]
 length:[responseData length]
 encoding:NSUTF8StringEncoding];
 NSLog(@"Content = %@", content);

 SBJSON *parser = [[SBJSON alloc] init];
 NSDictionary *json = [parser objectWithString:content];
 NSArray *geonames = [json objectForKey:@"geonames"];

 NSString *city = [[NSString alloc] init];
 NSString *state = [[NSString alloc] init];
 NSString *country = [[NSString alloc] init];
 for (NSDictionary *name in geonames) {
 city = [name objectForKey:@"name"];

264 | Chapter 10: Using Sensors

www.it-ebooks.info

http://www.it-ebooks.info/

 state = [name objectForKey:@"adminCode1"];
 country = [name objectForKey:@"countryName"];
 }
 [parser release];

 NSLog(@"Location = %@, %@, %@", city, state, country);

 NSString *string = [NSString stringWithFormat:@"%@,%@", city, state];
 appDelegate.mainViewController.location = string;
 [appDelegate.mainViewController.loadingActivityIndicator
 stopAnimating];
 [appDelegate.mainViewController refreshView: self];

}

-(void)dealloc {
 [appDelegate release];
 [responseData release];
 [theURL release];
 [super dealloc];
}

@end

This sets the location string in our MainViewController class.

This stops the loading indicator spinning in the MainViewController class.

This refreshes the main view managed by the MainViewController class.

Now we have the class to query and parse the reverse geocoder service; we just need
to write the code in the locationManager:didUpdateToLocation:fromLocation: delegate
method.

Click on the application delegate implementation file (WeatherAppDelegate.m) to open
it in the Xcode editor and import the geocoder class by adding this line at the top:

#import "FindNearbyPlace.h"

Next, in the didUpdateToLocation: method, add the code shown in bold:

- (void)locationManager:(CLLocationManager *)manager
 didUpdateToLocation:(CLLocation *)newLocation
 fromLocation:(CLLocation *)oldLocation
{
 NSLog(@"Location: %@", [newLocation description]);

 if (newLocation != oldLocation) {

 [self.mainViewController.loadingActivityIndicator
 startAnimating];
 FindNearbyPlace *find = [[FindNearbyPlace alloc] init];
 NSString *latitude = [NSString stringWithFormat:@"%f",
 newLocation.coordinate.latitude];
 NSString *longitude = [NSString stringWithFormat:@"%f",
 newLocation.coordinate.longitude];

The Core Location Framework | 265

www.it-ebooks.info

http://www.it-ebooks.info/

 [find queryServiceWithLat:latitude andLong:longitude];
 }
}

This starts the activity indicator spinning. We’ll stop it when we’ve parsed the JSON
returned by the GeoNames service and we’re ready to refresh the view in the con
nectionDidFinishLoading: method of the FindNearbyPlace class.

Here we simply retrieve the latitude and longitude from the CLLocation object, and we
pass them to our FindNearbyPlace class to resolve. There the connectionDidFinishLoad
ing: method takes care of updating the main view controller.

We’re done. Save your changes and click Build and Run to compile and deploy the
application in iPhone Simulator. Once it’s running, click the Info button to go to the
flip side of the application and toggle the switch. Click the Done button and return to
the main view. After a little while the activity indicator in the top-righthand corner
should start spinning and the weather information should change from being for Lon-
don to being for Cupertino, California.

Tidying up

Don’t be fooled. The application has many dangling loose ends to clean up before it
can be considered “ready for release.” For instance, in the FindNearbyPlace class we
concatenate the city and state to create the location we pass to the Google Weather
Service:

city = [name objectForKey:@"name"];
state = [name objectForKey:@"adminCode1"];
NSString *string = [NSString stringWithFormat:@"%@,%@", city, state];

appDelegate.mainViewController.location = string;

While this works for U.S. locations (Cupertino, CA), it fails for British locations where
you end up with a string of the form London,ENG, which the Weather service can’t
understand.

However, as it stands, it’s a nice starting point for integrating multiple web services
into a single application.

Using the Accelerometer
The iPhone’s accelerometer measures the linear acceleration of the device so that it can
report its roll and pitch, but not its yaw.

266 | Chapter 10: Using Sensors

www.it-ebooks.info

http://www.it-ebooks.info/

Yaw, pitch, and roll refer to the rotation of the device in three axes. If
you think about an aircraft in the sky, pushing the nose down or pulling
it up modifies the pitch angle of the aircraft. However, if you keep the
nose straight ahead, you can also modify the roll of the aircraft using
the flaps; one wing will come up, the other will go down. Finally, keep-
ing the wings level you can use the tail flap to change the heading (or
yaw) of the aircraft (rotating it in a 2D plane).

If you are dealing with an iPhone 3GS, which has a digital compass, you can combine
the accelerometer and magnetometer readings to have roll, pitch, and yaw measure-
ments (see the following section for details on how to access the magnetometer).

The accelerometer reports three figures: X, Y, and Z (see Figure 10-5). Acceleration
values for each axis are reported directly by the hardware as G-force values. Therefore,
a value of 1.0 represents a load of approximately 1-gravity (Earth’s gravity). X corre-
sponds to roll, Y to pitch, and Z to whether the device is front side up or front side
down, with a value of 0.0 being reported when the iPhone is edge-on.

Figure 10-5. The iPhone accelerometer axes

When dealing with acceleration measurements, you must keep in mind that the accel-
erometer is measuring just that: the linear acceleration of the device. When at rest (in
whatever orientation), the figures represent the force of gravity acting on the device,
and correspond to the roll and pitch of the device (in the X and Y directions at least).
But while in motion, the figures represent the acceleration due to gravity, plus the
acceleration of the device itself relative to its rest frame.

Using the Accelerometer | 267

www.it-ebooks.info

http://www.it-ebooks.info/

Writing an Accelerometer Application

You can follow along while I build this application in a screencast avail
able on the book’s website.

Let’s implement a simple view-based application to illustrate how to approach the
accelerometer. Open Xcode and start a new iPhone project, select a View-based Ap-
plication template, and name the project “Accelerometer” when prompted for a name.

Before jumping back into Xcode to show you how to use the accelerometer, we’re going
to build the UI for the application. Double-click on the AccelerometerViewControl-
ler.xib NIB file to open it in Interface Builder.

We’re going to both report the raw figures from the accelerometer and display them
using a UIProgressView element. So, drag and drop three progress bars along with labels
for those bars into the View window. After you do that, it should look something like
Figure 10-6. I’ve used two labels for each progress bar: one to hold the X, Y, or Z and
the other to hold the accelerometer measurements.

Make sure you’ve saved your changes, and close Interface Builder and return to Xcode.
Click on the AccelerometerViewController.h interface file to open it in the Xcode editor.

Figure 10-6. The Accelerometer application UI

268 | Chapter 10: Using Sensors

www.it-ebooks.info

http://learningiphoneprogramming.com/pages/accelerometer.html
http://learningiphoneprogramming.com/pages/accelerometer.html
http://www.it-ebooks.info/

We’re going to declare three UILabel and three UIProgressView variables as IBOutlets.
Since they aren’t going to be used outside the class, there isn’t much point in declaring
them as class properties. We’ll also declare a UIAccelerometer instance. Here’s how the
AccelerometerViewController.h interface file should look when you are done:

#import <UIKit/UIKit.h>

@interface AccelerometerViewController :
 UIViewController <UIAccelerometerDelegate> {
 IBOutlet UILabel *xLabel;
 IBOutlet UILabel *yLabel;
 IBOutlet UILabel *zLabel;

 IBOutlet UIProgressView *xBar;
 IBOutlet UIProgressView *yBar;
 IBOutlet UIProgressView *zBar;

 UIAccelerometer *accelerometer;

}

@end

Here we declare that the class implements the UIAccelerometer delegate protocol.

Make sure you’ve saved your changes and click on the corresponding Accelerometer-
ViewController.m implementation file to open it in the Xcode editor. We don’t actually
have to do very much here, as Interface Builder is going to handle most of the heavy
lifting. Here’s what the file should look like when you are done:

#import "AccelerometerViewController.h"

@implementation AccelerometerViewController

- (void)viewDidLoad {
 accelerometer = [UIAccelerometer sharedAccelerometer];
 accelerometer.updateInterval = 0.1;
 accelerometer.delegate = self;
 [super viewDidLoad];
}

- (void)didReceiveMemoryWarning {
 [super didReceiveMemoryWarning];
}

- (void)dealloc {
 [xLabel release];
 [yLabel release];
 [zLabel release];
 [xBar release];
 [yBar release];
 [zBar release];

 accelerometer.delegate = nil;
 [accelerometer release];

Using the Accelerometer | 269

www.it-ebooks.info

http://www.it-ebooks.info/

 [super dealloc];
}

#pragma mark UIAccelerometerDelegate Methods

- (void)accelerometer:(UIAccelerometer *)meter
 didAccelerate:(UIAcceleration *)acceleration
{
 xLabel.text = [NSString stringWithFormat:@"%f", acceleration.x];
 xBar.progress = ABS(acceleration.x);

 yLabel.text = [NSString stringWithFormat:@"%f", acceleration.y];
 yBar.progress = ABS(acceleration.y);

 zLabel.text = [NSString stringWithFormat:@"%f", acceleration.z];
 zBar.progress = ABS(acceleration.z);
}

@end

The UIAccelerometer is a singleton object, so we grab a reference to the singleton
rather than allocate and initialize a new instance of the class.

We set the update interval to 0.1 s, hence the accelerometer:didAccelerate: method
will be called 10 times every second.

We declare that this class is the delegate for the UIAccelerometer.

We implement the accelerometer:didAccelerate: delegate method and use it to set
the X, Y, and Z labels to the raw accelerometer readings, and the progress bar values
to the absolute value (the value without regard to sign) of the accelerometer reading,
each time it is called.

All we need to do now is connect the outlets to the UI elements we created earlier and
we’re done. Make sure you’ve saved your changes to the code and double-click on the
AccelerometerViewController.xib file to go back into Interface Builder.

Click on File’s Owner, and go to the Connections Inspector (⌘-2) and connect the
xLabel, yLabel, and zLabel outlets to the appropriate UILabel elements in the View
window. Then connect the xBar, yBar, and zBar outlets to the corresponding UIProg
ressBar elements, as shown in Figure 10-7.

OK, we’re done. Save the NIB and return to Xcode. Before you click the Build and Run
button, make sure you’ve configured the project to deploy onto your iPhone or iPod
touch to test it. Since this application makes use of the accelerometer, and iPhone
Simulator doesn’t have one, we’re going to have to test it directly on the device. We
covered deploying applications onto your iPhone or iPod touch at the end of Chapter 3.

If all goes well, you should see something that looks a lot like Figure 10-8.

270 | Chapter 10: Using Sensors

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 10-7. Connecting the outlets to the UI elements

Figure 10-8. The Accelerometer application running on an iPod touch sitting face-up on my desk,
measuring a 1-gravity acceleration straight down

Using the Accelerometer | 271

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Digital Compass
In addition to the accelerometer, the iPhone 3GS has a magnetometer that acts as a
digital compass. Combining the heading (yaw) information (see Figure 10-9) returned
by this device with the roll and pitch information returned by the accelerometer will
let you determine the true orientation of the iPhone in real time.

Figure 10-9. Using the magnetometer (a.k.a. the digital compass) in the iPhone 3GS, you can
determine the heading (yaw) of the device

You should be aware that the magnetometer is measuring the strength of the magnetic
field surrounding the device. In the absence of any strong local fields, these measure-
ments will be of Earth’s ambient magnetic field, allowing the device to determine its
“heading” with respect to the geomagnetic North Pole. The geomagnetic heading and
true heading, relative to the geographical North Pole, can vary widely (by several tens
of degrees depending on your location).

As well as reporting the current location, the CLLocationManager class can, in the case
where the device’s hardware supports it, report the current heading of the device. The
following code will create an instance of the class, and will send both location and
heading update messages to the designated delegate class:

CLLocationManager *locationManager = [[CLLocationManager alloc] init];
locationManager.delegate = self;
if(locationManager.locationServicesEnabled &&
 locationManager.headingAvailable)
{

272 | Chapter 10: Using Sensors

www.it-ebooks.info

http://www.it-ebooks.info/

 [locationManager startUpdatingLocation];
 [locationManager startUpdatingHeading];
} else {
 NSLog(@"Can't report heading");
}

It’s even more important to check whether heading information is available than it
is to check whether location services are available, as the availability of heading
information is currently restricted to iPhone 3GS devices only.

We can filter these update messages based on an angular filter. Changes in heading of
less than this amount will not generate an update message to the delegate:

locationManager.headingFilter = 5; // 5 degrees

The default value of this property is kCLHeadingFilterNone. Use this value if you want
to be notified of all heading updates.

The CLLocationManagerDelegate protocol offers a method that is called when the head-
ing is updated:

- (void)locationManager:(CLLocationManager*)manager
 didUpdateHeading:(CLHeading*)newHeading
{
 // If the accuracy is valid, process the event.
 if (newHeading.headingAccuracy > 0)
 {
 CLLocationDirection theHeading = newHeading.magneticHeading;

 // Do something with the event data.
 }
}

If location updates are also enabled, the location manager returns both true heading
and magnetic heading values. If location updates are not enabled, the location manager
returns only the magnetic heading value:

CLLocationDirection trueHeading = newHeading.trueHeading;

As I mentioned previously, the magnetometer readings will be affected by local mag-
netic fields, so the CLLocationManager will attempt to calibrate its heading readings by
displaying a heading calibration panel before it starts to issue update messages. How-
ever, before it does so, it will call the locationManagerShouldDisplayHeadingCalibra
tion: delegate method:

- (BOOL)locationManagerShouldDisplayHeadingCalibration:
 (CLLocationManager *)manager {
 ... code not shown ...
}

If you return YES from this method, the CLLocationManager will proceed to display the
device calibration panel on top of the current window. The calibration panel prompts
the user to move the device in a figure-eight pattern so that Core Location can distin-
guish between Earth’s magnetic field and any local magnetic fields. The panel will

Using the Digital Compass | 273

www.it-ebooks.info

http://www.it-ebooks.info/

remain visible until calibration is complete or until you dismiss it by calling the
dismissHeadingCalibrationDisplay: method in the CLLocationManager class.

Accessing the Proximity Sensor
The proximity and ambient light sensors are two separate sensors. The ambient light
sensor is used to change the brightness level of the device’s screen automatically, while
the proximity sensor is used by the device to turn the screen off when you put the phone
to your ear to make a call. Although it does have an ambient light sensor, the iPod touch
does not have a proximity sensor.

Unfortunately, there is no way to access the ambient light sensor in the official SDK.
However, developers can access the proximity sensor via the UIDevice class. This sensor
is an infrared LED emitter/detector pair positioned near the earpiece, as shown in
Figure 10-10. It measures the return reflection of the transmitted infrared beam to detect
(large) objects near the phone.

Figure 10-10. The IR LED of the proximity sensor is located near the earpiece

You can enable the sensor in your application by toggling the proximityMonitoringEn
abled Boolean:

UIDevice *device = [UIDevice currentDevice];
device.proximityMonitoringEnabled = YES;

You can query whether the proximity sensor is close to the user:

BOOL state = device.proximityState;

274 | Chapter 10: Using Sensors

www.it-ebooks.info

http://www.it-ebooks.info/

If proximity monitoring is enabled, a UIDeviceProximityStateDidChangeNotification
notification will be posted by the UIDevice when the state of the proximity sensor
changes; you can ask that your application is notified when this occurs by registering
your class as an observer with the notification center:

[[NSNotificationCenter defaultCenter]
 addObserver:self selector:@selector(proximityChanged:)
 name:@"UIDeviceProximityStateDidChangeNotification" object:nil];

Notifications would then get received by the proximityChanged: method:

- (void) proximityChanged: (NSNotification *)note {
 UIDevice *device = [note object];
 NSLog(@"In proximity: %i", device.proximityState);
}

Using Vibration

The motor that controls vibration is not a sensor; technically, it’s an
actuator. Because sensors and actuators generally go hand in hand, we’ll
look at the capability here.

Making the iPhone vibrate is a simple system call. You first need to add the Audio-
Toolbox framework to your project (right- or Ctrl-click on Frameworks, then use the
Add Existing Frameworks option), and then import the AudioToolbox headers into
the class where you intend to trigger the vibration:

#import <AudioToolbox/AudioToolbox.h>

At this point, you can make the device produce a short buzz by calling the following
method:

AudioServicesPlaySystemSound(kSystemSoundID_Vibrate);

Unfortunately, despite the fact that the underlying (private) Telephony framework of-
fers relatively subtle levels of control over the vibration pattern, the official support in
the SDK is limited to this single call.

You need to be careful about using the vibration feature. Using contin-
uous vibration, or using a timer to maintain the vibration, is a reason
for rejection during the App Store review process.

Using Vibration | 275

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11

Geolocation and Mapping

The Core Location API is one of the great things about the iPhone and iPod touch
platforms, but until the arrival of the MapKit Framework in the 3.0 SDK, it was actually
quite hard to take that location-aware goodness and display it on a map. The arrival of
the MapKit framework has simplified this enormously.

Let’s work through a few example applications to get you familiar with the framework.

User Location

You can follow along while I build this application in a screencast avail
able on the book’s website.

The first thing we’re going to do is build a simple application to answer the question
“Where am I?”. Start a new iPhone project in Xcode, select a view-based template, and
name the project “WhereAmI” when prompted.

Next, you need to add the MapKit and Core Location frameworks to your new project.
You do not need the Core Location framework to work with MapKit, but we’re going
to use it later in the chapter, so we may as well add it now:

1. Right-click on the Frameworks group in the Groups & Files pane in Xcode and
select Add→Existing Frameworks. In the pop-up window that appears, select the
MapKit framework and click Add.

2. Do this a second time, but for the Core Location framework.

277

www.it-ebooks.info

http://learningiphoneprogramming.com/pages/whereami.html
http://learningiphoneprogramming.com/pages/whereami.html
http://www.it-ebooks.info/

If you have upgraded your Xcode (and iPhone SDK) distribution in the
middle of developing a project, MapKit.framework may not show up in
the list of frameworks Xcode presents in the framework selection pop
up. In this case, you may be able to resolve the problem by opening the
Targets group in the Groups & Files pane in Xcode, right-clicking on
the application’s target, and selecting Get Info. Navigate to the Build
pane of the Target Info window and set the Base SDK of your project to
the SDK you currently have installed (rather than the SDK with which
you initially developed the project).

If this doesn’t resolve the problem, you may have to add the framework
manually. Click on the Add Other button in the bottom left of the win-
dow. The MapKit.framework framework is located in the /Developer/
Platforms/iPhoneOS.platform/Developer/SDKs/<iPhoneOSX.X.sdk>/
System/Library/Frameworks/ directory and you should be able to add it
manually. Replace <iPhoneOSX.X.sdk> with your current SDK version.

Once that’s done, click on the WhereAmIViewController.h interface file to open it in
the Xcode editor and add a map view instance to the class, along with the imports
needed for Core Location and MapKit:

#import <UIKit/UIKit.h>
#import <MapKit/MapKit.h>
#import <CoreLocation/CoreLocation.h>

@interface WhereAmIViewController : UIViewController {
 MKMapView *mapView;
}

@property (nonatomic, retain) IBOutlet MKMapView *mapView;

@end

Then click on the corresponding implementation file (WhereAmIViewController.m) to
open it in the Xcode editor. Make sure you synthesize the mapView property, remove
the /* and */ comment delimiters from viewDidLoad:, and release the mapView property
in the dealloc: method:

#import "WhereAmIViewController.h"

@implementation WhereAmIViewController

@synthesize mapView;

- (void)viewDidLoad {
 [super viewDidLoad];
}

- (void)didReceiveMemoryWarning {
 [super didReceiveMemoryWarning];
}

- (void)viewDidUnload {

278 | Chapter 11: Geolocation and Mapping

www.it-ebooks.info

http://www.it-ebooks.info/

}

- (void)dealloc {
 [mapView release];
 [super dealloc];
}

@end

Save your changes to the WhereAmIViewController class and double-click on the Where-
AmIViewController.xib file to open it in Interface Builder. Drag and drop an MKMap
View from the Library window into the View window. Now click on File’s Owner, select
the Attributes Inspector (⌘-2), and connect the mapView outlet to the MKMapView, as
shown in Figure 11-1.

Figure 11-1. Connecting the mapView outlet to the MKMapView

We’re done for now in Interface Builder. Save your changes to the NIB file and go back
into Xcode and click the Build and Run button on the Xcode toolbar to build and deploy
your application in iPhone Simulator. You should see something similar to Figure 11-2.

It’s not amazingly interesting so far, so let’s use Core Location to change that.

User Location | 279

www.it-ebooks.info

http://www.it-ebooks.info/

While MapKit knows the current user location and can mark it on the map (you’ll see
the property that enables this, showsUserLocation, in the didUpdateToLoca
tion:fromLocation: method shortly), there is no way to monitor it or update the current
map view when the location changes. So, we’re going to implement an application that
uses Core Location to determine and zoom to the current location and then display the
standard user location marker using MapKit.

Click on the WhereAmIAppDelegate.h interface file to open it in the Xcode editor. We’re
going to declare that the application delegate also implements the CLLocationManager
Delegate protocol, and add a locationManager property to the class declaration. Make
the changes shown in bold to this interface file:

#import <UIKit/UIKit.h>
#import <CoreLocation/CoreLocation.h>

@class WhereAmIViewController;

@interface WhereAmIAppDelegate : NSObject
 <UIApplicationDelegate, CLLocationManagerDelegate>
{
 UIWindow *window;

 CLLocationManager *locationManager;

Figure 11-2. The default map view in iPhone Simulator

280 | Chapter 11: Geolocation and Mapping

www.it-ebooks.info

http://www.it-ebooks.info/

 WhereAmIViewController *viewController;
}

@property (nonatomic, retain) IBOutlet UIWindow *window;
@property (nonatomic, retain) IBOutlet CLLocationManager *locationManager;
@property (nonatomic, retain) IBOutlet WhereAmIViewController *viewController;

@end

In the implementation file (WhereAmIAppDelegate.m), we need to create an instance
of the location manager and start updating our location (see “The Core Location
Framework” on page 254 in Chapter 10 for an overview of the location manager):

#import "WhereAmIAppDelegate.h"
#import "WhereAmIViewController.h"

@implementation WhereAmIAppDelegate

@synthesize window;
@synthesize locationManager;
@synthesize viewController;

- (void)applicationDidFinishLaunching:(UIApplication *)application {
 self.locationManager = [[[CLLocationManager alloc] init] autorelease];
 if (self.locationManager.locationServicesEnabled) {
 self.locationManager.delegate = self;
 self.locationManager.distanceFilter = 1000;
 [self.locationManager startUpdatingLocation];
 }
 [window addSubview:viewController.view];
 [window makeKeyAndVisible];
}

- (void)dealloc {
 [viewController release];
 [window release];
 [super dealloc];
}

@end

Now we must implement the locationManager:didUpdateToLocation:fromLocation:
delegate method. Add the following to WhereAmIAppDelegate.m:

- (void)locationManager:(CLLocationManager *)manager
 didUpdateToLocation:(CLLocation *)newLocation
 fromLocation:(CLLocation *)oldLocation {

 double miles = 12.0;
 double scalingFactor =
 ABS(cos(2 * M_PI * newLocation.coordinate.latitude /360.0));

 MKCoordinateSpan span;
 span.latitudeDelta = miles/69.0;
 span.longitudeDelta = miles/(scalingFactor*69.0);

User Location | 281

www.it-ebooks.info

http://www.it-ebooks.info/

 MKCoordinateRegion region;
 region.span = span;
 region.center = newLocation.coordinate;

 [viewController.mapView setRegion:region animated:YES];
 viewController.mapView.showsUserLocation = YES;
}

Here we set the map region to be 12 miles square, centered on the current location.
Then we zoom in and display the current user location.

The number of miles spanned by a degree of longitude range varies based
on the current latitude. For example, one degree of longitude spans a
distance of ~69 miles at the equator but shrinks to 0 at the poles. How-
ever, unlike longitudinal distances, which vary based on the latitude,
one degree of latitude is always ~69 miles (ignoring variations due to
the slightly ellipsoidal shape of Earth).

Length of 1 degree of Longitude (miles) = cosine (latitude) × 69 (miles)

Click the Build and Run button on the Xcode toolbar to build and deploy your appli-
cation in iPhone Simulator. You should see something like Figure 11-3.

Figure 11-3. The map view showing the current user location

282 | Chapter 11: Geolocation and Mapping

www.it-ebooks.info

http://www.it-ebooks.info/

Before leaving this example, let’s add one more feature to display the current latitude
and longitude on top of the map. Open the WhereAmIViewController.h interface file
and add two outlets to UILabel for the latitude and longitude values:

@interface WhereAmIViewController : UIViewController {

 MKMapView *mapView;
 UILabel *latitude;
 UILabel *longitude;

}

@property (nonatomic, retain) IBOutlet MKMapView *mapView;
@property (nonatomic, retain) IBOutlet UILabel *latitude;
@property (nonatomic, retain) IBOutlet UILabel *longitude;

@end

Since we’ve added these two properties, we need to synthesize them in the correspond-
ing implementation file, and additionally remember to release them in the dealloc:
method. Make the changes shown in bold to WhereAmIViewController.m:

@implementation WhereAmIViewController

@synthesize mapView;
@synthesize latitude;
@synthesize longitude;

... some code not shown ...

- (void)dealloc {
 [mapView release];
 [latitude release];
 [longitude release];
 [super dealloc];
}

@end

Make sure you’ve saved those changes and double-click on the WhereAmIViewCon-
troller.xib file to open it in Interface Builder. Drag and drop a round rect button
(UIButton) onto the view, resizing it roughly to the size shown in Figure 11-4.

We’re going to use the button as a backdrop for latitude and longitude labels. It’s
actually a fairly common trick to do this as it gives a nice box with rounded corners,
but you must uncheck the User Interaction Enabled box in the View section of the
Attributes Inspector (⌘-1). This will disable the user’s ability to select the button. If
you’re uncomfortable doing this, you could equally well use a UIImage as a backdrop,
or simply set the UILabel backgrounds to white or another appropriate color.

Next, drag and drop two labels from the Library onto the button in the View window
and change the label contents to be “Latitude” and “Longitude”. Finally, drag and drop
two more labels onto the button and position them next to the previous two and set

User Location | 283

www.it-ebooks.info

http://www.it-ebooks.info/

the contents to be blank. Now click on File’s Owner, go to the Attributes tab of the
Inspector window, and connect the longitude and latitude outlets to your two blank
labels, as shown in Figure 11-4.

Save your changes to the NIB file. Back in Xcode, click on the WhereAmIAppDele-
gate.m file to open it in the Xcode editor. Now all you have to do is populate the two
labels you added. In the locationManager:didUpdateToLocation:fromLocation:
method, add the lines shown in bold:

- (void)locationManager:(CLLocationManager *)manager
 didUpdateToLocation:(CLLocation *)newLocation
 fromLocation:(CLLocation *)oldLocation
{
 MKCoordinateSpan span;
 span.latitudeDelta = 0.2;
 span.longitudeDelta = 0.2;

 MKCoordinateRegion region;
 region.span = span;
 region.center = newLocation.coordinate;

Figure 11-4. Connecting the label outlets in Interface Builder

284 | Chapter 11: Geolocation and Mapping

www.it-ebooks.info

http://www.it-ebooks.info/

 [viewController.mapView setRegion:region animated:YES];
 viewController.mapView.showsUserLocation = YES;
 viewController.latitude.text =
 [NSString stringWithFormat:@"%f", newLocation.coordinate.latitude];
 viewController.longitude.text =
 [NSString stringWithFormat:@"%f", newLocation.coordinate.longitude];
}

Make sure you’ve saved your changes and click the Build and Run button in the Xcode
toolbar. If all goes well, you should be presented with a view that looks similar to
Figure 11-5.

Figure 11-5. The current user location

Annotating Maps
Like we did for the UIWebView in Chapter 7, here we’re going to build some code that
you’ll be able to reuse in your own applications later. We’re going to build a view
controller that we can display modally, and which will display an MKMapView annotated
with a marker pin and can then be dismissed, returning us to our application.

We can reuse the Prototype application code we built in Chapter 7, which I used to
demonstrate how to use the web and mail composer views. Open the Finder and

Annotating Maps | 285

www.it-ebooks.info

http://www.it-ebooks.info/

navigate to the location where you saved the Prototype project. Right-click on the folder
containing the project files and select Duplicate; a folder called Prototype copy will be
created containing a duplicate of our project. Rename the folder Prototype3, and just
as we did when we rebuilt the Prototype application to demonstrate the mail composer,
prune the application down to the stub with the Go! button and associated
pushedGo: method we can use to trigger the display of our map view (see “Sending
Email” on page 161 in Chapter 7 for details).

Now, right-click on the Classes group in the Groups & Files pane, select Add→New
File, and select Cocoa Touch Class from the iPhone section. Create a UIViewControl
ler subclass, leaving the “With XIB for user interface” checkbox ticked. Name the new
class “MapViewController” when prompted.

At this point, I normally rename the NIB file that Xcode automatically
created, removing the “Controller” part of the filename and leaving it
as MapView.xib, as I feel this is a neater naming scheme.

You’ll need to add both the MapKit and the Core Location frameworks to your project,
as you did in the preceding section, so that you can use the classes these frameworks
offer.

We’re going to be using the Core Location and MapKit frameworks
throughout this project; instead of having to include them every time
we need them we can use the Prototype_prefix.pch header file to import
them into all the source files in the project. Open this file (it’s in the
Other Sources group) and change it to read as follows:

#ifdef OBJC__
 #import <Foundation/Foundation.h>
 #import <UIKit/UIKit.h>
 #import <CoreLocation/CoreLocation.h>
 #import <MapKit/MapKit.h>
#endif

This file is called a prefix file because it is prefixed to all of your source
files. However, the compiler precompiles it separately; this means it
does not have to reparse the file on each compile run, which can dra-
matically speed up your compile times on larger projects.

Let’s start by creating the UI for the new map view. Double-click on the Map-
View.xib file to open the NIB file in Interface Builder. Drag and drop a navigation bar
(UINavigationBar) from the Library window, positioning it at the top of the view. Then
drag a map view (MKMapView) into the view and resize it to fill the remaining portion of
the View window. Finally, drag a bar button item (UIBarButtonItem) onto the navigation
bar, and in the Attributes Inspector (⌘-1) change its Style and Identifier to Done in the

286 | Chapter 11: Geolocation and Mapping

www.it-ebooks.info

http://www.it-ebooks.info/

Bar Button Item section of the tab. At this point, your view should look similar to
Figure 11-6.

Figure 11-6. Creating our map view in Interface Builder

After saving the changes to the MapView.xib file, close it and return to Xcode. Open
the MapViewController.h interface file. Just as we did for the web view, we want to
make this class self-contained so that we can reuse it without any modifications. There-
fore, override the init: function again to pass the information you need when instan-
tiating the object:

#import <UIKit/UIKit.h>

@interface MapViewController : UIViewController <MKMapViewDelegate> {
 CLLocationCoordinate2D theCoords;
 NSString *theTitle;
 NSString *theSubTitle;
 IBOutlet MKMapView *mapView;

Annotating Maps | 287

www.it-ebooks.info

http://www.it-ebooks.info/

 IBOutlet UINavigationItem *mapTitle;
}

- (id) initWithCoordinates:(CLLocationCoordinate2D)coordinates;
- (id) initWithCoordinates:(CLLocationCoordinate2D)coordinates
 andTitle:(NSString *)title;
- (id) initWithCoordinates:(CLLocationCoordinate2D)coordinates
 andTitle:(NSString *)title andSubTitle:(NSString *)subtitle;
- (IBAction) done:(id)sender;

@end

I’ve actually provided three independent init methods; which one you use depends on
how much metadata you want to pass to the MapViewController class. If you look at
the corresponding implementation in the MapViewController.m file, you’ll notice that
I’ve really only coded one of them. The other two are simply convenience methods that
are chained to the first:

#import "MapViewController.h"

@implementation MapViewController

- (id) initWithCoordinates:(CLLocationCoordinate2D)coordinates
 andTitle:(NSString *)title andSubTitle:(NSString *)subtitle
{
 if (self = [super init]) {
 theTitle = title;
 theSubTitle = subtitle;
 theCoords = coordinates;
 }
 return self;
}

- (id) initWithCoordinates:(CLLocationCoordinate2D)coordinates
 andTitle:(NSString *)title
{
 return [self initWithCoordinates:coordinates
 andTitle:title andSubTitle:nil];
}

- (id) initWithCoordinates:(CLLocationCoordinate2D)coordinates
{
 return [self initWithCoordinates:coordinates
 andTitle:nil andSubTitle:nil];
}

- (IBAction) done:(id)sender {
 [self dismissModalViewControllerAnimated:YES];
}

- (void)viewDidLoad {
 [super viewDidLoad];
 mapTitle.title = theTitle;

 // code to add annotations goes here later

288 | Chapter 11: Geolocation and Mapping

www.it-ebooks.info

http://www.it-ebooks.info/

}

- (void)didReceiveMemoryWarning {
 [super didReceiveMemoryWarning];
}

- (void)dealloc {
 [theTitle release];
 [theSubTitle release];
 [mapView release];
 [mapTitle release];
 [super dealloc];
}

@end

Save your changes and click on the PrototypeViewController.m implementation file to
open it in the Xcode editor. Import the MapViewController class:

#import "MapViewController.h"

Then replace the pushedGo: method with the following:

-(IBAction) pushedGo:(id)sender {
 CLLocationCoordinate2D coord = {37.331689, -122.030731};
 MapViewController *mapView =
 [[MapViewController alloc] initWithCoordinates:coord
 andTitle:@"Apple"
 andSubTitle:@"1 Infinite Loop"];
 [self presentModalViewController:mapView animated:YES];
 [mapView release];
}

Now we have to go back into Interface Builder and connect the web view up to our
controller code. Open the MapView.xib file in Interface Builder and make sure the view
mode is in list mode (⌘-Option-2). Expand all the nodes by Option-clicking on the
disclosure triangle to the left of the view. Next, click on File’s Owner and follow these
steps:

1. In the Connections Inspector (⌘-2), connect the mapTitle outlet to the UINaviga
tionItem “Navigation Item (Title)”.

2. Connect the mapView outlet to the MKMapView.

3. Connect the done: received action to the UIBarButtonItem “Bar Button Item
(Done)”.

4. Click on the map view and connect the delegate outlet back to File’s Owner.

At this point, if you click on File’s Owner in the main NIB window and check the
Connections tab, you should see something very much like Figure 11-7.

It’s time to stop and test our application. Save the NIB file, return to Xcode, and click
on the Build and Run button to compile and start the application in iPhone Simulator.

Annotating Maps | 289

www.it-ebooks.info

http://www.it-ebooks.info/

Tap the Go! button and the map view should load. Right now we haven’t specified any
annotations, or a region, so you should just see a default world map (see Figure 11-8).

Let’s change that. The first thing we need to do is create a class that implements the
MKAnnotation protocol. Right-click on the Classes group in the Groups & Files pane,
select Add→New File, and create a new Objective-C class (an NSObject subclass). Name
the new class “SimpleAnnotation” when prompted.

Open the SimpleAnnotation.h interface file Xcode has just created in the editor and
modify it as follows:

#import <Foundation/Foundation.h>

@interface SimpleAnnotation : NSObject
 <MKAnnotation>
{
 CLLocationCoordinate2D coordinate;
 NSString *title;
 NSString *subtitle;
}

@property (nonatomic, assign) CLLocationCoordinate2D coordinate;

Figure 11-7. The map view NIB file connected to the MapViewController

290 | Chapter 11: Geolocation and Mapping

www.it-ebooks.info

http://www.it-ebooks.info/

@property (nonatomic, retain) NSString *title;
@property (nonatomic, retain) NSString *subtitle;

+ (id)annotationWithCoordinate:(CLLocationCoordinate2D)coord;
- (id)initWithCoordinate:(CLLocationCoordinate2D)coord;

@end

Figure 11-8. The initial main view (left) and the web view (right)

Then open the corresponding SimpleAnnotation.m implementation file, and make the
changes shown here:

#import "SimpleAnnotation.h"

@implementation SimpleAnnotation

@synthesize coordinate;
@synthesize title;
@synthesize subtitle;

+ (id)annotationWithCoordinate:(CLLocationCoordinate2D)coord {
 return [[[[self class] alloc] initWithCoordinate:coord] autorelease];
 }

- (id)initWithCoordinate:(CLLocationCoordinate2D)coord {

Annotating Maps | 291

www.it-ebooks.info

http://www.it-ebooks.info/

 if (self = [super init]) {
 self.coordinate = coord;
 }
 return self;
}

- (void)dealloc {
 [title release];
 [subtitle release];
 [super dealloc];
}

@end

The SimpleAnnotation class is just a container; it implements the MKAnnotation protocol
to allow it to hold the coordinates and title (with subtitle) of our annotation.

Save your changes and click on the MapViewController.m implementation file to open
it in the Xcode editor. Import the SimpleAnnotation class:

#import "SimpleAnnotation.h"

Edit the viewDidLoad: method to add the annotation using theCoords, theTitle, and
theSubTitle passed to the MapViewController when it was initialized:

- (void)viewDidLoad {
 [super viewDidLoad];
 mapTitle.title = theTitle;

 SimpleAnnotation *annotation =
 [[SimpleAnnotation alloc] initWithCoordinate:theCoords];
 annotation.title = theTitle;
 annotation.subtitle = theSubTitle;

 MKCoordinateRegion region = { theCoords, {0.2, 0.2} };
 [mapView setRegion:region animated:NO];
 [mapView addAnnotation: annotation];
 [annotation release];
}

We’re done. Make sure all your changes are saved, and click the Build and Run button
in the Xcode toolbar to build and deploy your application in iPhone Simulator. If all
goes well, clicking on the Go! button should give you a view that looks like Figure 11-9.

292 | Chapter 11: Geolocation and Mapping

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 11-9. The finished MapViewController and its view

At this point, you have reusable MapViewController and SimpleAnnotation classes, along
with an associated NIB file that you can drag and drop directly into your own projects.

You might want to think about some improvements if you do that, of course. For
instance, you could easily expand the class to handle multiple annotations. While the
annotations themselves can provide a much richer interface than a simple pushpin,
look at the documentation for the MKAnnotationView class for some inspiration.

Annotating Maps | 293

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12

Integrating Your Application

The iPhone offers standard view controllers for taking pictures with the camera and
sending email from within your own application. The software ecosystem surrounding
your application is extremely rich with such built-in services and applications. You
should take advantage of these as much as possible. In this chapter, we’ll look at how
you can do that.

Application Preferences
Users look for application preferences in two main settings: in the application itself,
and in the iPhone’s Settings application. For simple applications, applications with few
preferences, and applications with preferences that need to be modified regularly, you
should keep the preferences within the application itself. However, for more compli-
cated applications, applications with complicated or numerous different preferences,
and applications with preferences that the user will rarely have to modify, it’s preferable
to use the Settings application.

Despite it being done in some applications currently for sale on the App
Store, Apple advises that you should never split your preferences be-
tween the Settings application and a custom settings screen inside your
own application. According to Apple, “If you have preferences, pick one
solution and use it exclusively.” This is good advice; having multiple
places to change settings is confusing not just for the user, but also for
you as a developer.

Adding a preferences panel for your application to the main Settings application is easy.
You do this by adding a special Settings.bundle file to your application and then con-
figuring the Root.plist file contained inside the bundle in the Xcode editor.

When the built-in Settings application launches, it checks each third-party application
for the presence of a Settings Bundle. For each bundle it finds, it displays the applica-
tion’s name and icon on the main page. When the user taps the row belonging to the

295

www.it-ebooks.info

http://www.it-ebooks.info/

application, Settings loads the Root.plist Settings Page file and uses that file to display
your application’s main page of preferences.

Let’s add a Settings Bundle to the Where Am I? application we wrote in Chapter 11.
Open the WhereAmI project in Xcode, right-click on the project’s icon in the Groups
& Files pane in Xcode, and select Add→New File. In the pop-up window that appears,
click on the Resource category in the lefthand pane underneath iPhone OS, select Set-
tings Bundle, as shown in Figure 12-1, and click Next. Accept the default suggested
name of Settings.bundle when prompted.

You’ll notice that the bundle appears in the Groups & Files pane in Xcode with an icon
that looks a lot like a Lego brick. If you click on the arrow beside it to expand the bundle
you’ll see the Root.plist file that contains an XML description of the settings root page,
and an en.lproj directory containing the localized string resource file (for English). You
can add further localizations to your Settings Bundle if needed.

Figure 12-1. Adding a Settings Bundle to your application

The default Settings Bundle contains some example settings. Click on the Build and
Run button in the Xcode toolbar to compile and deploy the application into iPhone
Simulator. Tap the simulator’s Home button to quit out of the application, and then
find the Settings application on the Home screen. Tap the Settings application to open
it, and you should see something similar to Figure 12-2.

296 | Chapter 12: Integrating Your Application

www.it-ebooks.info

http://www.it-ebooks.info/

Since we haven’t added an icon to the application (see “Adding an Icon” on page 225
in Chapter 9), the space to the left of the WhereAmI entry is blank; if we had added an
icon it would be displayed next to our application name. If you now tap the WhereAmI
entry, you’ll be presented with the default preferences pane generated from the Settings
Bundle, also shown in Figure 12-2.

If a file called Icon-Settings.png (a 29×29-pixel image) is located at the
top level of your application’s bundle directory (drag it into the top level
of your project under Groups & Files and check the box to copy the
item), that icon is used to identify your application preferences in the
Settings application. If no such image is present, the Settings application
uses a scaled down version of your application’s icon file instead.

Returning to Xcode, click on the Root.plist file inside Settings.bundle to open it in the
Xcode editor, and you’ll see the property list description of the Settings page. Option-
click the disclosure triangle next to PreferencesSpecifiers, and you’ll see all the settings,
as shown in Figure 12-3.

Figure 12-2. The simulator Settings application (left) with the default Settings Bundle we added to the
Where Am I? application (right)

Application Preferences | 297

www.it-ebooks.info

http://www.it-ebooks.info/

Like any property list file, Xcode by default displays the Root.plist file
as a key-value pair list. However, you can see the raw XML of the
Root.plist property list by right-clicking on the Root key and selecting
Open As→Source Code File.

If you compare Figures 12-2 and 12-3, you can see how the property list file (Fig-
ure 12-3) compares to the rendered user interface (Figure 12-2):

• Item 0 (PSGroupSpecifier) is a group label whose value is the string Group.

• Item 1 (PSTextFieldSpecifier) is a text label whose value is the string Name.

• Item 2 (PSToggleSwitchSpecifier) is a toggle switch labeled “Enabled” with a de-
fault value of YES.

• Item 3 (PSSliderSpecifier) is a slider bar with a minimum value of 0, a maximum
value of 1, and a default value of 0.5.

Each UI element is an item described in the PreferenceSpecifiers array.

To make this easier to work with, you can tell Xcode explicitly that the Root.plist file
is an iPhone Settings bundle. From the Xcode menu select View→Property List

Figure 12-3. The Root.plist file in Settings.bundle

298 | Chapter 12: Integrating Your Application

www.it-ebooks.info

http://www.it-ebooks.info/

Type→iPhone Settings plist (you may need to double-click on Root.plist before this
option becomes available on the menu). This tells Xcode to format the contents of the
property list a little differently, as shown in Figure 12-4, making it easier to understand
and edit.

Figure 12-4. The Root.plist file formatted using the View→Property List Type→iPhone Settings plist
from the Xcode menu bar

There are six possible property list keys:

• Group (PSGroupSpecifier)

• Title (PSTitleValueSpecifier)

• Text Field (PSTextFieldSpecifier)

• Toggle Switch (PSToggleSwitchSpecifier)

• Multi Value (PSMultiValueSpecifier)

• Slider (PSSliderSpecifier)

Additionally, although we won’t go into it here, you can point to child preference panes
(additional settings pages) using the Child Pane (PSChildPaneSpecifier) property list
key.

Let’s modify the default property key list provided by Xcode.

Application Preferences | 299

www.it-ebooks.info

http://www.it-ebooks.info/

Click on Item 3 and press the Backspace key to delete it from the property list file; do
the same for Item 1. You should be left with a Group and a Toggle Switch.

Rename the Group: under Item 0, double-click on the Title property’s value and enter
Latitude & Longitude.

Keep the Toggle Switch unmodified. After doing this, the Root.plist file should resemble
Figure 12-5.

Figure 12-5. The edited property list pane in the Xcode editor

Make sure you’ve saved your changes to the Root.plist file and click the Build and Run
button in the Xcode toolbar. Once the application has started, tap the Home button
and make your way to the Settings application. Tap the WhereAmI preference entry,
and you should now see something closely resembling Figure 12-6. We’re going to use
the preference pane to toggle whether we want the application to display the latitude
and longitude on the screen when it displays our map.

When you run your application in iPhone Simulator, it stores preference
values in ~/Library/Application Support/iPhone Simulator/User/Applica-
tions/<APP_ID>/Library/Preferences, where <APP_ID> is a randomly
generated directory name. However, each time Xcode performs a clean
install of your application, any previous version of the application’s
preferences will be deleted.

Return to Xcode and click on the WhereAmIAppDelegate.m file to open it in the Xcode
editor. Now add the following class method, which initializes the default settings for
the application:

+ (void)initialize {
 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
 NSDictionary *defaultsToRegister =
 [NSDictionary dictionaryWithObject:@"YES"

300 | Chapter 12: Integrating Your Application

www.it-ebooks.info

http://www.it-ebooks.info/

 forKey:@"enabled_preference"];
 [defaults registerDefaults:defaultsToRegister];
}

Figure 12-6. The edited property list pane in the Settings application

If your user has already accessed the application’s settings inside the iPhone Settings
application, the default settings will already have been initialized. If this has not been
done, the values will not exist and will be set to nil (or in the case of Booleans, to NO).
As the application delegate is loaded, this method initializes the user defaults (the
initialize: message is sent to each class before it receives any other messages).

Using this method to set the defaults has the unfortunate side effect that you have to
specify your defaults in two places: in the Root.plist file, where they properly belong;
and in your application delegate, where they don’t.

The right way to deal with this problem is to read in the defaults from the Settings.bun-
dle file which is stored as part of your application. To do this, replace the initial
ize: method with the following:

Application Preferences | 301

www.it-ebooks.info

http://www.it-ebooks.info/

+ (void)initialize {

 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
 NSString *settingsBundle =
 [[NSBundle mainBundle] pathForResource:@"Settings" ofType:@"bundle"];
 NSDictionary *settings =
 [NSDictionary dictionaryWithContentsOfFile:
 [settingsBundle stringByAppendingPathComponent:@"Root.plist"]];

 NSArray *preferences = [settings objectForKey:@"PreferenceSpecifiers"];
 NSMutableDictionary *defaultsToRegister =
 [[NSMutableDictionary alloc] initWithCapacity:[preferences count]];

 [defaults registerDefaults:defaultsToRegister];
}

If your application preferences don’t exist when your application is launched, you can
therefore read the values directly from the Settings.bundle file rather than having to store
the defaults in two places.

You can check that your preference bundle is working correctly by adding the following
into the application delegate’s applicationDidFinishLaunching: method and checking
the Console (select Run→Console from the Xcode menu bar). Add the lines shown in
bold:

- (void)applicationDidFinishLaunching:(UIApplication *)application {
 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
 BOOL enabled = [defaults boolForKey:@"enabled_preference"];
 NSLog(@"enabled = %d", enabled);

 self.locationManager = [[[CLLocationManager alloc] init] autorelease];

 ... other code not shown ...
}

We may have working preferences, but they don’t do anything yet. Let’s change that
right now. Click on the WhereAmIViewController.h interface file to open it in the Xcode
editor, and add the following outlets to the declaration (inside the curly braces of the
@interface block):

IBOutlet UIButton *backgroundButton;
IBOutlet UILabel *latLabel;
IBOutlet UILabel *longLabel;

There is no need to make them properties.

Make sure you’ve saved all your changes (Option-⌘-S), and then double-click on the
WhereAmIViewController.xib NIB file to open it in Interface Builder. Click on File’s
Owner, and in the Connections tab of the Inspector window connect the background
Button outlet to the UIButton we used as a background for the labels, as shown in
Figure 12-7; then connect the latLabel and longLabel outlets to the “Latitude” and
“Longitude” UILabels, respectively.

302 | Chapter 12: Integrating Your Application

www.it-ebooks.info

http://www.it-ebooks.info/

Save your changes to the NIB file and return to Xcode. Then click on the WhereAmI-
ViewController.m implementation file to open it in the Xcode editor. Add the following
viewWillAppear: method:

- (void)viewWillAppear:(BOOL)animated {

 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
 if ([defaults boolForKey:@"enabled_preference"]) {
 backgroundButton.hidden = NO;
 latLabel.text = @"Latitude";
 longLabel.text = @"Longitude";
 } else {
 backgroundButton.hidden = YES;
 latLabel.text = @"";
 longLabel.text = @"";
 }

 [super viewWillAppear:animated];
}

This method checks the application preferences to see if Latitude & Longitude are
enabled. If they are, we set the text of the labels appropriately and make sure the button
is visible. Correspondingly, if Latitude & Longitude are disabled, we hide the button
and empty both strings.

Figure 12-7. Connecting the new outlets to File’s Owner

Application Preferences | 303

www.it-ebooks.info

http://www.it-ebooks.info/

Finally, we have to go back into the application delegate file and make a small modi-
fication to the locationManager:didUpdateToLocation:fromLocation: method. Here we
have to stop the application from printing the current latitude and longitude to the
screen if Latitude & Longitude are disabled via preferences. Add the lines shown in
bold (wrapping the two existing assignments):

NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
if ([defaults boolForKey:@"enabled_preference"]) {
 viewController.latitude.text =
 [NSString stringWithFormat:@"%f", newLocation.coordinate.latitude];
 viewController.longitude.text =
 [NSString stringWithFormat:@"%f", newLocation.coordinate.longitude];
}

This brackets the lines that set the text of the UILabels with an if() block; we set the
text of the labels only if Latitude & Longitude are enabled in the preferences.

We’re done here. Make sure all of your changes have been saved, and click the Build
and Run button in the Xcode toolbar to compile and deploy your application into
iPhone Simulator.

By default, the Latitude & Longitude display is enabled, so everything should appear
as before. However, if you disable Latitude & Longitude in Settings, quit out of Settings,
and relaunch the Where Am I? application, you’ll see that Latitude & Longitude has
disappeared, as shown in Figure 12-8.

Figure 12-8. With Latitude & Longitude enabled in the preferences (left) and disabled (right)

304 | Chapter 12: Integrating Your Application

www.it-ebooks.info

http://www.it-ebooks.info/

Accessing Global Preferences
As well as your own application preferences, you can programmatically access the de-
vice’s global preferences from your own application:

NSString *path = [NSHomeDirectory()
 stringByAppendingPathComponent:
 @"Library/Preferences/.GlobalPreferences.plist"];
NSDictionary *dict = [NSDictionary dictionaryWithContentsOfFile:path];
NSLog(@"Phone number: %@", [dict objectForKey:@"SBFormattedPhoneNumber"]);

While there are a number of entries, the two keys that are probably going to be of most
interest to you as a developer are AppleLocale and SBFormattedPhoneNumber. These are
the current localizations used by the device; as I am based in the United Kingdom my
AppleLocale is en_GB, and my phone number is formatted to the current locale.

You can also retrieve the phone number directly from the global preferences:

NSString *phoneNumber = [[NSUserDefaults standardUserDefaults]
 objectForKey:@"SBFormattedPhoneNumber"];
NSLog(@"Phone number: %@", phoneNumber);

You should be aware that the phone number might not always be available unless the
number has been set in the Phone→My Number preference panel in the Settings ap-
plication on the device. This is not guaranteed to be the case for all devices, as some
carriers don’t set this automatically.

Custom URL Schemes
One of the more interesting features provided by the SDK is the ability for your appli-
cation to use custom URL schemes to launch other applications, and in turn, to register
custom URL schemes of its own. These schemes can be used to launch your application,
either from the browser or from another application on the device. Additionally, such
schemes are not just limited to launching the application; you can pass additional in-
formation to your application via the URL.

Using Custom Schemes
Most of the built-in applications Apple provides respond to custom URL schemes; for
example, the Maps, Mail, YouTube, iTunes, and App Store applications will all open
in response to custom URLs. However, there are also many established third-party
applications with published URL schemes that you can use in your own application.

At the time of this writing, a fairly extensive list of URL schemes for
third-party iPhone applications was available at http://handleopenurl
.com/scheme.

Custom URL Schemes | 305

www.it-ebooks.info

http://handleopenurl.com/scheme
http://handleopenurl.com/scheme
http://www.it-ebooks.info/

Making a telephone call

You can easily trigger a telephone call from your application by using the tel: URL
scheme:

NSString *string = @"tel:+19995551234";
NSURL *url = [NSURL URLWithString:string];
[[UIApplication sharedApplication] openURL:url];

The phone number must not contain spaces or square brackets, although it can
contain dashes and a leading + sign indicating that the international call prefix
should be prepended.

Sending an SMS message

Unfortunately, Apple has not provided either a standard view controller as it did with
email or an API for sending SMS messages from your application. This is regrettable,
but if you consider the abuses that programmatic access might allow, you can probably
follow the company’s reasoning as to why this is not available.

However, you can use the custom URL scheme sms:[phone number] to open the SMS
application and allow your users to send SMS messages:

NSString *string = @"sms:+19995551234";
NSURL *url = [NSURL URLWithString:string];
[[UIApplication sharedApplication] openURL:url];

As for tel: URLs, the phone number must not contain spaces or square brackets.

As this will cause your application to exit and you cannot prepopulate the body of the
SMS message, it’s not generally very useful.

Registering Custom Schemes
Regardless of what you intend to do after a custom URL launches your application,
you must first register your custom scheme using your application’s Info.plist file. Let’s
do that for our City Guide application. You can choose any of the versions of the City
Guide application we’ve worked on so far for this addition.

Open the project in Xcode and click on its Info.plist file to open it in the Xcode editor.
Right-click the top row’s Information Property List and select Add Row. A row will be
added and you’ll be prompted to select a key from a drop-down menu. Scroll to the
bottom and select “URL types.” This will create an array key item, so click the disclosure
triangle next to “URL types” to expand it.

Click on Item 0 to expand it to show the URL identifier line. The value for this can
actually be anything, but it’s normal to use the Bundle Identifier, so double-click on
the Bundle Identifier value to select it and then copy the identifier string. Then double-
click on the field to the right of the URL identifier and paste it into the box.

306 | Chapter 12: Integrating Your Application

www.it-ebooks.info

http://www.it-ebooks.info/

Now right-click on Item 0, and select Add Row. You’ll be presented with a shorter drop
down of possible values; this time select URL Schemes. This will create an array key
item. Expand it, double-click on the value box for its Item 0, and enter cityguide.

If you’ve followed the procedure correctly, your Info.plist file should now look like mine
does in Figure 12-9. We’re done; adding a custom URL scheme to your application
really is that easy.

Figure 12-9. The Info.plist with our cityguide:// scheme registered

Of course, now that we’ve added the custom URL scheme we need to modify our
application code so that it knows what to do with it. We’re going to modify the City
Guide application to take URLs of the form cityguide://<City Name> and open the
relevant city page (e.g., the London page for cityguide://London).

If two different applications register with the same URL scheme, the
most recently installed application will be the one that responds to cus-
tom URLs conforming to the URL scheme.

We really need to make only a few changes to the City Guide application to implement
handling custom URL schemes. When the application is opened in response to a city-
guide:// URL, the application:handleOpenURL: method is called in the application del-
egate class.

Click on the CityGuideDelegate.m implementation file to open it in the Xcode editor,
and add the following method:

Custom URL Schemes | 307

www.it-ebooks.info

http://www.it-ebooks.info/

- (BOOL)application:(UIApplication *)application
 handleOpenURL:(NSURL *)url
{
 // URL of the form cityguide://London
 viewController.placeFromURL = [url host];
 return YES;
}

Save your changes and then click on the RootController.h interface file. Here we need
to declare an instance variable (put this inside the @implementation block’s curly
braces):

NSString *placeFromURL;

Now declare it as a property:

@property (nonatomic, retain) NSString *placeFromURL;

In the corresponding RootController.m implementation file, synthesize the new
property:

@synthesize placeFromURL;

Now modify the viewDidLoad: method to do the actual work. I’ve highlighted the code
that you need to add to deal with the custom URL scheme:

- (void)viewDidLoad {
 self.title = @"City Guide";
 self.navigationItem.rightBarButtonItem = self.editButtonItem;
 CityGuideDelegate *delegate =
 (CityGuideDelegate *)[[UIApplication sharedApplication] delegate];
 cities = delegate.cities;

 if (self.placeFromURL) {
 NSIndexPath *indexPath;
 for(int i = 0; i < cities.count; i++) {
 City *thisCity = [cities objectAtIndex:i];
 if([thisCity.cityName isEqualToString:self.placeFromURL]) {
 indexPath = [NSIndexPath indexPathForRow:i inSection:0];
 }
 }

 // Begin debugging code
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:self.placeFromURL
 message:[NSString stringWithFormat:@"indexPath = %@", indexPath]
 delegate:self
 cancelButtonTitle:nil
 otherButtonTitles:@"OK", nil];
 [alert show];
 [alert autorelease];
 // End debugging code

 CityController *city =
 [[CityController alloc] initWithIndexPath:indexPath];
 [delegate.navController pushViewController:city animated:NO];
 [city release];

308 | Chapter 12: Integrating Your Application

www.it-ebooks.info

http://www.it-ebooks.info/

 }
}

Displaying the UIAlertView is purely for debugging purposes to give some feedback.
We’re using it because the Debugger Console is unavailable, since the application
is started by clicking a URL rather than by running under Xcode. It’s not integral to
handling the custom URL scheme, and once you understand what’s going on, you
can delete this section of the code.

We’re done. Click the Build and Run button to compile and deploy the application
into iPhone Simulator. Once the application is launched, quit again by clicking
the Home button and navigate to Safari. Click on the address bar, enter
cityguide://London, and click the Go button (or tap the Return key).

If all goes well, Safari should quit and the City Guide application will launch. Soon
afterward, you should see something similar to Figure 12-10.

Figure 12-10. Opening the City Guide application from Safari

This doesn’t work only in Safari; we can now open the City Guide application from
other applications using the following snippet of code:

NSString *string = @"cityguide://London";
NSURL *url = [NSURL URLWithString:string];
[[UIApplication sharedApplication] openURL:url];

Custom URL Schemes | 309

www.it-ebooks.info

http://www.it-ebooks.info/

This will open the London city guide in the City Guide application.

Media Playback
Just as it has done for images with the UIImagePickerController class (see “The Image
Picker View Controller” on page 133 in Chapter 6) and for email with the MFMailCom
poseViewController class (see “Sending Email” on page 161 in Chapter 7), Apple has
provided a standard way to select and play back iPod media inside your own
application.

The MPMediaPickerController and associated classes make use of the
iPod library; this is not present in iPhone Simulator and will work cor-
rectly only on the device itself.

However, things are a little bit more complicated than the two previous cases; here we
use an MPMediaPickerController that, via the MPMediaPickerControllerDelegate proto-
col, returns an MPMediaItemCollection object containing the media items the user has
selected, and that can be played using an MPMusicPlayerController object.

These classes are provided by the Media Player framework; if you want to use them,
you must add the Media Player framework to your project by right-clicking the Frame-
works group in Groups & Files and selecting Add→Existing Frameworks.

Let’s reuse the Prototype application. Open the Finder and navigate to the location
where you saved the Prototype project. Right-click on the folder containing the project
files and select Duplicate; a folder called Prototype copy will be created containing a
duplicate of the project. Rename the folder PrototypePlayer, and just as we did in
Chapter 7, prune the application down to the stub with the Go! button and associated
pushedGo: method that we’ll use to trigger the display of our media player.

To prune the Prototype application down to the stub, you will need to:

1. Delete the WebViewController.h, WebViewController.m, and Web-
View.xib files from your project.

2. Remove the #import "WebViewController.h" line from Prototype-
ViewController.m.

3. Delete the current body of the pushedGo: method.

Next, open the PrototypeViewController.h interface file, import the Media Player
framework into the interface (.h) files, and declare your class as an MPMediaPickerCon
trollerDelegate:

#import <UIKit/UIKit.h>
#import <MediaPlayer/MediaPlayer.h>

310 | Chapter 12: Integrating Your Application

www.it-ebooks.info

http://www.it-ebooks.info/

@interface PrototypeViewController : UIViewController
 <MPMediaPickerControllerDelegate> {
 IBOutlet UIButton *goButton;
}

-(IBAction) pushedGo:(id)sender;

@end

Save your changes, and open the PrototypeViewController.m implementation file. In
the pushedGo: method, instantiate an MPMediaPickerController object and present its
view modally to the user:

-(IBAction) pushedGo:(id)sender {
 MPMediaPickerController *mediaPicker =
 [[MPMediaPickerController alloc]
 initWithMediaTypes: MPMediaTypeAnyAudio];
 mediaPicker.delegate = self;
 mediaPicker.allowsPickingMultipleItems = YES;
 [self presentModalViewController:mediaPicker animated:YES];
 [mediaPicker release];
}

Now implement the following two delegate methods:

- (void) mediaPicker:(MPMediaPickerController *) mediaPicker
 didPickMediaItems:(MPMediaItemCollection *) userMediaItemCollection
{
 [self dismissModalViewControllerAnimated: YES];

 MPMusicPlayerController *musicPlayer =
 [MPMusicPlayerController applicationMusicPlayer];
 [musicPlayer setQueueWithItemCollection: userMediaItemCollection];
 [musicPlayer play];
}

- (void) mediaPickerDidCancel: (MPMediaPickerController *) mediaPicker {
 [self dismissModalViewControllerAnimated: YES];
}

The MPMusicPlayerController responds to all the messages you might expect (e.g.,
play, pause, stop, volume). You can link these directly to buttons in your user in-
terface if you want to give users direct control over these functions.

Like the UIImagePickerControllerDelegate methods we met earlier in the book, these
two methods are used to dismiss the view controller and handle the returned items.

Save your changes, and click on the Build and Run button in the Xcode toolbar to build
and deploy your code. Remember that you’ll need to configure your project (see
“Putting the Application on Your iPhone” on page 37 in Chapter 3) to allow you to
deploy the application onto your iPhone or iPod touch so that you can test the appli-
cation on your device.

Media Playback | 311

www.it-ebooks.info

http://www.it-ebooks.info/

Once your application loads, tap the Go! button to bring up the MPMediaPickerControl
ler, select some songs, and tap the Done button in the navigation bar (see Fig-
ure 12-11). Your music should start playing.

Figure 12-11. The initial main view (left) and MPMediaPickerController (right)

Once playback has begun, you need to keep track of the currently playing item and
display that to the user, or at the very least provide some way for the user to pause (or
stop) playback, or perhaps to change her selection. The MPMusicPlayerController class
provides two methods: the beginGeneratingPlaybackNotifications: method and a cor-
responding endGeneratingPlaybackNotifications: method. Add this line to the did
PickMediaItems: method:

- (void) mediaPicker:(MPMediaPickerController *) mediaPicker
 didPickMediaItems:(MPMediaItemCollection *) userMediaItemCollection {
 [self dismissModalViewControllerAnimated: YES];

 MPMusicPlayerController *musicPlayer =
 [MPMusicPlayerController applicationMusicPlayer];
 [musicPlayer setQueueWithItemCollection: userMediaItemCollection];
 [musicPlayer beginGeneratingPlaybackNotifications];
 [musicPlayer play];
}

312 | Chapter 12: Integrating Your Application

www.it-ebooks.info

http://www.it-ebooks.info/

When the begin method is invoked, the class will start to generate notifications of when
the player state changes and when the current playback item changes, which your
application can register to handle by adding itself as an observer using the NSNotifica
tionCenter class:

- (void) mediaPicker:(MPMediaPickerController *) mediaPicker
 didPickMediaItems:(MPMediaItemCollection *) userMediaItemCollection {
 [self dismissModalViewControllerAnimated: YES];

 MPMusicPlayerController *musicPlayer =
 [MPMusicPlayerController applicationMusicPlayer];
 [musicPlayer setQueueWithItemCollection: userMediaItemCollection];
 [musicPlayer beginGeneratingPlaybackNotifications];

 NSNotificationCenter *notificationCenter =
 [NSNotificationCenter defaultCenter];
 [notificationCenter addObserver:self
 selector:@selector(handleNowPlayingItemChanged:)
 name:@"MPMusicPlayerControllerNowPlayingItemDidChangeNotification"
 object:musicPlayer];

 [notificationCenter addObserver:self
 selector:@selector(handlePlaybackStateChanged:)
 name:@"MPMusicPlayerControllerPlaybackStateDidChangeNotification"
 object:musicPlayer];

 [musicPlayer play];

}

This will invoke the selector methods in our class when the appropriate notification
arrives. (You could, for example, use the first to update a UILabel in your view telling
the user the name of the currently playing song.)

However, for now let’s just implement these methods to print messages to the console
log. In the PrototypeViewController.h interface file, declare the selector methods:

@interface PrototypeViewController : UIViewController
 <MPMediaPickerControllerDelegate>
{
 IBOutlet UIButton *goButton;
}

-(IBAction) pushedGo:(id)sender;
- (void)handleNowPlayingItemChanged:(id)notification;
- (void)handlePlaybackStateChanged:(id)notification;

@end

Then, in the PrototypeViewController.m implementation file, add the following
method. This will be called when the current item being played changes:

- (void)handleNowPlayingItemChanged:(id)notification {
 MPMusicPlayerController *musicPlayer =
 [MPMusicPlayerController applicationMusicPlayer];

Media Playback | 313

www.it-ebooks.info

http://www.it-ebooks.info/

 MPMediaItem *currentItem = [musicPlayer nowPlayingItem];
 NSLog(@"%@", currentItem);
}

Unusually, the MPMediaItem class has only one instance method: valueForProp
erty:. This is because the class can wrap a number of media types, and each type
can have a fairly wide range of metadata associated with it. You can find a full list
of possible keys in the MPMediaItem class reference, but keys include MPMediaItemPro
pertyTitle and MPMediaItemPropertyArtwork, among others.

While the second method handles changes in state, we can use this to update our user
interface (e.g., changing the state of the Play and Stop buttons when the music ends):

- (void)handlePlaybackStateChanged:(id)notification {
 MPMusicPlayerController *musicPlayer =
 [MPMusicPlayerController applicationMusicPlayer];
 MPMusicPlaybackState playbackState = [musicPlayer playbackState];
 if (playbackState == MPMusicPlaybackStatePaused) {
 NSLog(@"Paused");

 } else if (playbackState == MPMusicPlaybackStatePlaying) {
 NSLog(@"Playing");

 } else if (playbackState == MPMusicPlaybackStateStopped) {
 NSLog(@"Stopped");

 }
}

Save your changes, and click on the Build and Run button in the Xcode toolbar to build
and deploy your code onto your device. Once your application loads, tap the Go! button
to bring up the MPMediaPickerController again, select some songs, and tap the Done
button in the navigation bar. Your music should start playing, but this time you should
see something similar to the following log messages in the Debugger Console:

2009-12-11 00:29:42.535 Prototype[447:207] <MPMediaItem 0x1373e0>
 persistentID: 6817778870160863775
2009-12-11 00:29:42.685 Prototype[447:207] Playing

Using the Address Book
Just like the MPMediaPickerController class in the preceding section, and the other
classes we met earlier in the book, Apple has provided an ABPeoplePickerNavigation
Controller and associated delegate protocol to allow you to both prompt the user for
contact information and display contact information to the user. However, in this case
the framework it provides also allows your application to interact with person and
group records directly.

314 | Chapter 12: Integrating Your Application

www.it-ebooks.info

http://www.it-ebooks.info/

Once you reach the lower levels of the Address Book framework—for
instance, dealing with individual person records—the interface presen-
ted by the framework is in C rather than Objective-C. This is especially
obvious when dealing with the address book programmatically rather
than interactively using the navigation controller.

Interactive People Picking
To illustrate how to use the ABPeoplePickerNavigationController, we’re going to reuse
the Prototype application code yet again. So, open the Finder and navigate to the lo-
cation where you saved the Prototype project. Right-click on the folder containing the
project files and select Duplicate; a folder called Prototype copy will be created con-
taining a duplicate of the project. Rename the folder Prototype4, and just as we did
before, prune the application down to the stub (as we did in the previous section for
the media player example) with the Go! button and associated pushedGo: method that
we’ll use to trigger the display of our address book picker.

Click on the PrototypeViewController.h interface file to open it in the Xcode editor. We
need to declare the class as both an ABPeoplePickerNavigationControllerDelegate and
a UINavigationControllerDelegate. Both declarations are necessary for the class to in-
teract with the ABPeoplePickerNavigationController:

#import <UIKit/UIKit.h>
#import <AddressBook/AddressBook.h>
#import <AddressBookUI/AddressBookUI.h>

@interface PrototypeViewController : UIViewController
 <UINavigationControllerDelegate,
 ABPeoplePickerNavigationControllerDelegate>
{
 IBOutlet UIButton *goButton;
}

-(IBAction) pushedGo:(id)sender;

@end

Now modify the pushedGo: method in the corresponding PrototypeViewController.m
implementation file:

-(IBAction) pushedGo:(id)sender {
 ABPeoplePickerNavigationController *peoplePicker =
 [[ABPeoplePickerNavigationController alloc] init];
 peoplePicker.peoplePickerDelegate = self;
 [self presentModalViewController:peoplePicker animated:YES];
 [peoplePicker release];
}

Unlike most Objective-C classes, the ABPeoplePickerNavigationController uses the
peoplePickerDelegate property to specify its delegate rather than the more common
delegate property.

Using the Address Book | 315

www.it-ebooks.info

http://www.it-ebooks.info/

Next, add the three mandatory ABPeoplePickerNavigationControllerDelegate methods
specified by the delegate protocol:

- (BOOL)peoplePickerNavigationController:
 (ABPeoplePickerNavigationController *)picker
 shouldContinueAfterSelectingPerson:(ABRecordRef)person
{
 [self dismissModalViewControllerAnimated:YES];
 return NO;
}

- (BOOL)peoplePickerNavigationController:
 (ABPeoplePickerNavigationController *)picker
 shouldContinueAfterSelectingPerson:(ABRecordRef)person
 property:(ABPropertyID)property
 identifier:(ABMultiValueIdentifier)identifier
{
 return NO;
}

- (void)peoplePickerNavigationControllerDidCancel:
 (ABPeoplePickerNavigationController *)picker
{
 [self dismissModalViewControllerAnimated:YES];
}

If this method returns YES, the picker will continue after the user selects a name from
the address book, displaying the person’s details. If the method returns NO, the picker
will not continue. If you intend to return NO, you should also dismiss the view
controller.

This method is called only if you want the picker to continue after the user selects
a name from the address book. The address record is then displayed to the user. If
this method returns YES, the picker will continue after the user selects a property
(e.g., a mobile phone number, fax number). If the method returns NO, the picker will
not continue. If you intend to return NO, you should also dismiss the view controller.

This method is called when the user taps the Cancel button in the navigation bar of
the picker interface.

We’ve reached a point where you can compile and check the code, but remember that
you should also add the AddressBook and AddressBookUI frameworks to the project
before clicking the Build and Run button in the Xcode toolbar. When you do so, you
should see the familiar gray screen with the Go! button as shown in Figure 12-12; click
it and you’ll be presented with a view of the address book. Selecting a name in the
address book will dismiss the picker view and return you directly to the main gray
screen.

316 | Chapter 12: Integrating Your Application

www.it-ebooks.info

http://www.it-ebooks.info/

The picker is displayed, but even if the user selects a name from the list, we don’t do
anything with the returned record. Let’s add some additional code to the peoplePick
erNavigationController:shouldContinueAfterSelectingPerson: method to fix that
omission:

- (BOOL)peoplePickerNavigationController:
 (ABPeoplePickerNavigationController *)picker
 shouldContinueAfterSelectingPerson:(ABRecordRef)person
{

 NSString *name = (NSString *)ABRecordCopyCompositeName(person);

 ABMutableMultiValueRef phones =
 ABRecordCopyValue(person, kABPersonPhoneProperty);
 NSArray *numbers =
 (NSArray *)ABMultiValueCopyArrayOfAllValues(phones);

 ABMutableMultiValueRef emails =
 ABRecordCopyValue(person, kABPersonEmailProperty);
 NSString *addresses =
 (NSString *)ABMultiValueCopyArrayOfAllValues(emails);

 NSString *note = (NSString *)
 ABRecordCopyValue(person, kABPersonNoteProperty);

Figure 12-12. The initial main view (left) and the ABPeoplePickerNavigationController (right)

Using the Address Book | 317

www.it-ebooks.info

http://www.it-ebooks.info/

 NSLog(@"name = %@, numbers = %@, email = %@, note = %@",
 name, numbers, addresses, note);

 [self dismissModalViewControllerAnimated:YES];
 return NO;
}

The ABRecordCopyCompositeName() method returns a human-readable name for the
record.

There are two basic types of properties: single-value and multivalue. Single-value prop-
erties contain data that can have only a single value, such as a person’s name. Multivalue
properties contain data that can have multiple values, such as a person’s phone number.
You can see from the preceding code that single-value and multivalue properties are
handled slightly differently.

You can find a full list of the different properties available in an address
book record in the ABPerson class documentation.

Make sure you’ve saved your changes and click the Build and Run button in the Xcode
toolbar to compile and deploy your application into iPhone Simulator. When the ap-
plication launches, click the Go! button and then select a name from the list. You should
see something similar to Figure 12-13 logged to the Console (select Run→Console from
the Xcode menu bar to display the Debugger Console).

Figure 12-13. The properties returned from the people picker controller for John Appleseed

318 | Chapter 12: Integrating Your Application

www.it-ebooks.info

http://www.it-ebooks.info/

What if we want to retrieve a specific phone number from the list? It’s easier to let the
user select the phone number he needs, and that’s where the peoplePickerNavigation
Controller:shouldContinueAfterSelectingPerson:property:identifier: method
would come into play (we returned NO from this earlier in this section, so this example
does not allow the user to select a number).

A multivalue property is a list of values, but each value also has a text label and an
identifier associated with it. This second delegate method provides you with both the
property and the identifier for the value (i.e., a specific phone number) that is of interest
to the user.

However, if you know which property value you’re looking for inside the multivalue
property, you can programmatically retrieve the identifier for that value. For example,
here’s how you’d select the mobile phone number from the list of returned phone
numbers:

ABMultiValueRef phones = ABRecordCopyValue(person, kABPersonPhoneProperty);

ABMultiValueIdentifier identifier;
for(int i = 0; i < numbers.count; i++) {
 if(CFStringCompare(ABMultiValueCopyLabelAtIndex(phones, i),
 kABPersonPhoneMobileLabel, 1) == 0) {
 identifier = ABMultiValueGetIdentifierAtIndex(phones, i);
 }
}

You can then retrieve the mobile phone number at any time by using the identifier:

NSString *mobile =
 (NSString *) ABMultiValueCopyValueAtIndex(phones,
 ABMultiValueGetIndexForIdentifier(phones, identifier));
NSLog(@"Mobile = %@", mobile);

Programmatic People Picking
You do not have to use the ABPeoplePickerNavigationController to access the address
book; you can access it directly, as shown here:

ABAddressBookRef addressBook = ABAddressBookCreate();
CFArrayRef allPeople = ABAddressBookCopyArrayOfAllPeople(addressBook);

for (int i = 0; i < ABAddressBookGetPersonCount(addressBook); i++) {
 ABRecordRef ref = CFArrayGetValueAtIndex(allPeople, i);
 NSString *contact = (NSString *)ABRecordCopyCompositeName(ref);
 NSLog(@"%@", contact);
}

The preceding code will instantiate a copy of the address book, retrieve references to
all of the records, and then iterate through the array of records. Then, in the same way
we dealt with records after interactively retrieving them with the picker controller, we
print the full name of each contact to the Debug Console.

Using the Address Book | 319

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13

Other Native Platforms

If you want to build applications for the iPhone and the iPod touch that will be sold on
the App Store, alternatives are available to the traditional Objective-C and Cocoa Touch
route. Development platforms now exist allowing JavaScript and C# developers to get
direct access to the iPhone’s hardware features, such as the accelerometer.

PhoneGap
PhoneGap, developed by Nitobi, is an open source development platform for building
cross-platform mobile applications with JavaScript.

On the iPhone, it works by providing a prebuilt library containing Objective-C classes
that wrap the iPhone’s native capabilities (e.g., vibration and accelerometer support)
and exposes these capabilities to JavaScript along with an Xcode project template that
makes use of the library. You can then compile your application as a hybrid of native
Objective-C and JavaScript inside Xcode.

The platform is device-agnostic, allowing you to build an application for the iPhone,
Android, and BlackBerry devices simultaneously. Developing applications using the
PhoneGap framework is a reasonable alternative to building all-native applications in
Objective-C.

In the past, submitting to the App Store applications built around the PhoneGap plat-
form was problematic. However, since the 0.8.0 release, this has been resolved and
Apple has approved PhoneGap for building applications intended for the store.

Since the 0.8.0 release, the PhoneGap platform has embedded a version
tag into the compiled iPhone application bundle to allow Apple to iden-
tify the version used in your application build during the application
review process.

321

www.it-ebooks.info

http://www.phonegap.com/
http://www.it-ebooks.info/

If you’re a web developer who wants to build mobile applications in HTML and Java-
Script while still taking advantage of the hardware features on the iPhone, Android,
and BlackBerry devices, you may want to take a look at the PhoneGap platform.

If you’re interested in developing native iPhone applications using
HTML and JavaScript, at least two alternatives to PhoneGap are now
available: Appcelerator and Rhomobile. However, anecdotally at least,
PhoneGap is the most well known of the three platforms.

Download and Installation
The easiest way to make use of the PhoneGap platform on the iPhone is to build the
PhoneGapLib static library for iPhone. This will allow you to create PhoneGap-based
iPhone application projects directly using an Xcode project template file.

You can download the latest version of the PhoneGap code, which includes PhoneGa-
pLib, either from the project’s Git repository or from the main PhoneGap website. If
you’re downloading the code from the project website, you should download version
0.8.2 or later, as earlier versions do not include the PhoneGapLib library.

The PhoneGap platform, and especially the PhoneGapLib library, is
under active development and installation instructions are therefore
subject to change.

After downloading the source, open a terminal window, navigate to the source direc-
tory, and type make to build the PhoneGap platform. You should see something very
much like the following scroll by in your terminal window:

$ cd Downloads/phonegap-phonegap-27e998e/
$ ls
total 48
drwxr-xr-x 13 aa staff 442 16 Nov 18:03 ./
drwx------+ 10 aa staff 340 18 Nov 15:27 ../
-rwxr-xr-x@ 1 aa staff 132 16 Nov 18:03 .gitignore*
-rwxr-xr-x@ 1 aa staff 3743 16 Nov 18:03 README.md*
-rwxr-xr-x@ 1 aa staff 2742 16 Nov 18:03 Rakefile*
drwxr-xr-x@ 12 aa staff 408 16 Nov 18:03 android/
drwxr-xr-x@ 10 aa staff 340 16 Nov 18:03 blackberry/
-rwxr-xr-x@ 1 aa staff 2795 16 Nov 18:03 configure*
drwxr-xr-x@ 7 aa staff 238 16 Nov 18:03 iphone/
drwxr-xr-x@ 25 aa staff 850 16 Nov 18:03 javascripts/
drwxr-xr-x@ 4 aa staff 136 16 Nov 18:03 util/
drwxr-xr-x@ 11 aa staff 374 16 Nov 18:03 winmo/
$ cd iphone
$ make
 .
 .
 .
$

322 | Chapter 13: Other Native Platforms

www.it-ebooks.info

http://www.appcelerator.com/
http://rhomobile.com/
http://github.com/phonegap/phonegap/
http://phonegap.com/download/
http://www.it-ebooks.info/

If everything looks OK at this point, you can close the terminal window. Now open the
Finder and navigate to the iphone/ directory inside your PhoneGap source code folder.
Inside the folder you should see a PhoneGapLibInstaller.pkg file.

If you don’t see the PhoneGapLibInstaller.pkg file, you can create it
manually. In the Finder, open the iphone/PhoneGapLibInstaller direc-
tory under the PhoneGap source directory. Look for the PhoneGapLi-
bInstaller.pmdoc PackageMaker document. Double-click on this file to
open it inside the package maker and click the Build and Run button in
the PackageMaker toolbar.

Doing this will build the PhoneGapLib installer bundle, and save it (at
least by default) in your Documents folder. If you return to your Finder
window and navigate to your Documents folder, you should see a
PhoneGapLib installer package file.

If you double-click on the PhoneGapLibInstaller.pkg file, you’ll start the installer ap-
plication, as shown in Figure 13-1. Accept all of the defaults.

Figure 13-1. The PhoneGapLib Installer

Building a PhoneGap Project
Start Xcode and create a new project. If PhoneGap has been successfully installed, you
should now see a PhoneGap project template entry under the User Templates header,
as shown in Figure 13-2.

PhoneGap | 323

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 13-2. Starting a new PhoneGap project in Xcode

Start a new PhoneGap project, and you’ll see something much like Figure 13-3.

If you click the Build and Run button on the Xcode toolbar, the sample PhoneGap
application will build and deploy into iPhone Simulator.

You can modify the files inside the www folder in your project and add your HTML,
CSS, and JavaScript to build your own AJAX-based application.

Since PhoneGap uses the file:// protocol to load your HTML into a nor-
mal UIWebView, you can load and execute JavaScript from other websites,
without problems.

If you’re interested in exploring further the possibility of building iPhone applications
using HTML and JavaScript, you might want to look at Building iPhone Apps with
HTML, CSS, and JavaScript by Jonathan Stark (O’Reilly).

324 | Chapter 13: Other Native Platforms

www.it-ebooks.info

http://oreilly.com/catalog/9780596805791/
http://oreilly.com/catalog/9780596805791/
http://www.it-ebooks.info/

MonoTouch
The MonoTouch platform from Novell allows you to build C#- and .NET-based ap-
plications on the iPhone and iPod touch. It comes in two editions: Professional and
Enterprise.

A license for the Professional Edition, intended for individual use, costs $399 per year.
The Enterprise Edition, intended for corporate use, costs $999 per year (although you
can buy a five-developer pack for $3,999 per year). Alternatively, you can download
an evaluation version that enables development and testing against iPhone Simulator
only.

Download and Installation
Before downloading and installing MonoTouch, you must download the latest release
of Mono, the open source development platform based on the .NET Framework that
allows developers to build cross-platform applications in C#. You can obtain it from
http://www.mono-project.com/.

The Mono framework downloads as a disk image file containing a package installer
file. Double-click on this package file to start the Mono installer, as shown in Fig-
ure 13-4.

Figure 13-3. The HelloWorld PhoneGap application in Xcode

MonoTouch | 325

www.it-ebooks.info

http://monotouch.net/
http://www.mono-project.com/
http://www.it-ebooks.info/

Figure 13-4. Installing Mono

After installing the Mono framework, you need to install the MonoDevelop environ-
ment before you can install MonoTouch itself. MonoDevelop is an IDE primarily
designed for C# and other .NET languages and you can download it from http://mon
odevelop.com/; it comes as a disk image, and installation is simply a matter of dragging
and dropping the MonoDevelop.app application from the disk image to your Applica-
tions folder.

You need to use the latest MonoTouch version of MonoDevelop for
Mac OS X, as it contains several fixes that are not in the mainstream
version of the application. This version is linked from the MonoTouch
website.

After installing Mono and MonoDevelop, you can download the trial version of the
MonoTouch SDK from http://monotouch.net/DownloadTrial. MonoTouch is distrib-
uted as a package file that will automatically start the Installer when it downloads, as
shown in Figure 13-5.

326 | Chapter 13: Other Native Platforms

www.it-ebooks.info

http://monodevelop.com/
http://monodevelop.com/
http://monotouch.net/DownloadTrial
http://www.it-ebooks.info/

Building a MonoTouch Project
Double-click on the MonoDevelop application that you installed in your Applications
folder, and you will be presented with something similar to Figure 13-6. Select
File→New Solution from the MonoDevelop menu to open the New Solution window
(Figure 13-7). From there, choose a new C#→iPhone→iPhone MonoTouch Project.

After entering the solution name, click the Forward button and then the Okay button
to complete the setup process. You do not need to choose any of the optional project
features (e.g., Packaging or Unix Integration). In the Solution pane, click the disclosure
triangle next to the solution name to expand it, and then expand each subfolder in the
same way, and you’ll be presented with something that looks a lot like Figure 13-8.

The default template generated by the MonoTouch SDK produces a Main.cs file that
is used to start your application event loop:

using System;
using System.Collections.Generic;
using System.Linq;
using MonoTouch.Foundation;
using MonoTouch.UIKit;

namespace HelloWorld
{

Figure 13-5. Installing MonoTouch

MonoTouch | 327

www.it-ebooks.info

http://www.it-ebooks.info/

 public class Application
 {
 static void Main (string[] args)
 {
 UIApplication.Main (args);
 }
 }

 // The name AppDelegate is referenced in the MainWindow.xib file.
 public partial class AppDelegate : UIApplicationDelegate
 {
 // This method is invoked when the application has loaded its UI
 // and its ready to run public override bool FinishedLaunching
 // (UIApplication app, NSDictionary options)
 {
 // If you have defined a view, add it here:
 // window.AddSubview (navigationController.View);

 window.MakeKeyAndVisible ();

 return true;
 }

 // This method is required in iPhoneOS 3.0
 public override void OnActivated (UIApplication application)
 {
 }
 }
}

Figure 13-6. The main MonoDevelop window

328 | Chapter 13: Other Native Platforms

www.it-ebooks.info

http://www.it-ebooks.info/

The default template also creates a MainWindow.xib.designer.cs file that MonoTouch
will update each time you edit the MainWindow.xib file inside Interface Builder. This
file will mirror all of the views, controllers, outlets, and actions that you add to your
UI and then map those elements to C# properties that you can access from your own
code. Here’s the default MainWindow.xib.designer.cs:

namespace HelloWorld
{
 // Base type probably should be MonoTouch.Foundation.NSObject or subclass
 [MonoTouch.Foundation.Register("AppDelegate")]
 public partial class AppDelegate
 {

 [MonoTouch.Foundation.Connect("window")]
 private MonoTouch.UIKit.UIWindow window {
 get {
 return ((MonoTouch.UIKit.UIWindow)(this.GetNativeField ("window")));
 }
 set { this.SetNativeField ("window", value); }
 }
 }
}

Figure 13-7. The MonoDevelop New Solution window

MonoTouch | 329

www.it-ebooks.info

http://www.it-ebooks.info/

If you select Run→Run from the MonoDevelop menu bar at this point, the application
will be built, compiled to native code, and started inside iPhone Simulator. You should
see something very similar to Figure 13-9.

Figure 13-9. The default MonoTouch template running in iPhone Simulator

Quit from iPhone Simulator and return to the MonoDevelop environment. Double-
click on the MainWindow.xib file to open the NIB file in Interface Builder. Drag a button
(UIButton) and a label (UILabel) into the main view window.

Figure 13-8. The Hello World application in the MonoDevelop Solution Pad

330 | Chapter 13: Other Native Platforms

www.it-ebooks.info

http://www.it-ebooks.info/

Next, click on the app delegate in the MainWindow.xib file and go to the Classes seg-
ment of the multisegmented control at the top of the Library window. Click on
AppDelegate in the list of objects, and then click on the Outlets segment of the multi-
segmented control underneath the AppDelegate object. Click on the plus sign button
below the outlets list to add a new outlet. Add two new outlets, calling them “button”
and “label”, respectively; see Figure 13-10.

Figure 13-10. Adding the button and label outlets

MonoTouch | 331

www.it-ebooks.info

http://www.it-ebooks.info/

In the Connections Inspector (⌘-2), connect the button and label outlets to the button
and label elements as you’ve done in other projects. Figure 13-11 shows what the fin-
ished NIB should look like (you can use the Attributes Inspector to change the appear-
ance of the button and label).

Figure 13-11. The MainWindow.xib file in Interface Builder

Save your changes and return to the MonoDevelop environment. If you look again at
the MainWindow.xib.designer.cs file, you should see that it reflects the changes you
made to the view inside Interface Builder. The changes that MonoDevelop made are
shown in bold:

namespace HelloWorld {

 // Base type probably should be MonoTouch.Foundation.NSObject or subclass
 [MonoTouch.Foundation.Register("AppDelegate")]
 public partial class AppDelegate {

 #pragma warning disable 0169
 [MonoTouch.Foundation.Connect("window")]
 private MonoTouch.UIKit.UIWindow window {
 get {

332 | Chapter 13: Other Native Platforms

www.it-ebooks.info

http://www.it-ebooks.info/

 return ((MonoTouch.UIKit.UIWindow)(this.GetNativeField("window")));
 }
 set {
 this.SetNativeField("window", value);
 }
 }

 [MonoTouch.Foundation.Connect("button")]
 private MonoTouch.UIKit.UIButton button {
 get {
 return ((MonoTouch.UIKit.UIButton)(this.GetNativeField("button")));
 }
 set {
 this.SetNativeField("button", value);
 }
 }

 [MonoTouch.Foundation.Connect("label")]
 private MonoTouch.UIKit.UILabel label {
 get {
 return ((MonoTouch.UIKit.UILabel)(this.GetNativeField("label")));
 }
 set {
 this.SetNativeField("label", value);
 }
 }
 }
}

You should not make any changes to the MainWindow.xib.designer.cs
file, as the MonoTouch framework updates it automatically each time
you edit your NIB file in Interface Builder.

Double-click on the Main.cs file to open it in the MonoTouch editor and add the fol-
lowing code directly before the line where the window is made visible (window.Make
KeyAndVisible ();):

button.TouchDown += delegate {
 label.Text = "Pushed Button";
};

Save your modifications and select Run→Run from the MonoDevelop menu bar. Once
the application has been built and been deployed into iPhone Simulator, tap the Push!
button. You should see something like Figure 13-12.

MonoTouch | 333

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 13-12. The MonoTouch Hello World application

You’ve just built your first iPhone application with MonoTouch.

334 | Chapter 13: Other Native Platforms

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 14

Going Further

We’ve managed to cover a lot of ground over the preceding 13 chapters, but there is
still a lot more ground to go. While you should by now be confidently building solid
applications for the iPhone and iPod touch, there is still a lot to learn.

Cocoa and Objective-C
The Objective-C language has a number of powerful features, and the Cocoa frame-
work that is layered on top of the language is extensive. I’ve obviously not had the time
or space in this book to cover either one in the depth it really deserves.

If you intend to continue developing for the iPhone, you should consider reading further
on Objective-C, especially if you’re having difficulties with memory management or
the Model-View-Controller pattern around which most iPhone application develop-
ment revolves.

Apple provides some excellent tutorial material on its developer website and that
should certainly be your first port of call. I also recommend Programming in Objective-
C by Stephen G. Kochan (Addison-Wesley) and Cocoa and Objective-C: Up and Run
ning by Scott Stevenson (O’Reilly), for a more detailed look at the language. See also
Cocoa Design Patterns by Erik M. Buck and Donald A. Yacktman (Addison-Wesley)
for a detailed look at design patterns in Cocoa.

The iPhone SDK
Predictably, I’ve focused on the parts of Cocoa and Objective-C that will be most helpful
in allowing you to write your own applications for the iPhone. But even there I’ve left
out a lot in an attempt to simplify and get you started quickly. A more in-depth look
at the iPhone SDK is available in iPhone SDK Application Development, First Edition by
Jonathan Zdziarski (O’Reilly).

A good cookbook to help you solve specific problems is The iPhone Developer’s Cook-
book: Building Applications with the iPhone SDK by Erica Sadun (Addison-Wesley).

335

www.it-ebooks.info

http://oreilly.com/catalog/9780596804817/
http://oreilly.com/catalog/9780596804817/
http://oreilly.com/catalog/9780596523190/
http://www.it-ebooks.info/

Erica’s book consists of an excellent collection of recipes that solve the vexing question:
“How do I make my application do X, Y, or Z?” She provides some solid example code
that you can lift off the page and use yourself, often without any modification, in your
own applications.

Web Applications
This book looked at how to build native applications. As I mentioned in Chapter 1,
there is an alternative: you can build your application as a web application, taking it
entirely online and doing away with the native SDK altogether. However, many native
iPhone applications sit on a blurry line between the native and web worlds, wrapping
custom content in a UIWebView inside the application, with much of the backend pro-
cessing done “in the cloud.” For instance, I know of several developers who are using
Google App Engine to power their applications and store user data, with little or no
number crunching actually going on in the iPhone device. Knowing how to build web
applications is a useful skill, even for a hardened Objective-C programmer building a
native application.

If you’re interested in building web applications for the iPhone, you should look at
Building iPhone Apps with HTML, CSS, and JavaScript by Jonathan Stark (O’Reilly) and
Professional iPhone and iPod touch Programming: Building Applications for Mobile Sa-
fari by Richard Wagner (Wiley).

If you’re thinking about using Google App Engine as a scalable backend for your iPhone
application, you should look at Using Google App Engine by Charles Severance and
Programming Google App Engine by Dan Sanderson (both published by O’Reilly).

Core Data
One of the most important additions to the iPhone SDK, at least from the perspective
of the developer community, was Core Data. It is a powerful and efficient framework
for data management and persistence, and while it was new to the iPhone at the time
it was added, it had been available to developers on the Mac since the release of Mac
OS X 10.4 (Tiger).

Core Data allows you to easily define your application’s data model, creating a managed
object model that allows you to specify an abstract definition of your model objects.
In a similar fashion to how Interface Builder takes much of the heavy lifting out of
building complicated user interfaces (the view), Core Data takes the heavy lifting out
of building the model.

We didn’t even touch on Core Data in this book; if you’re interested in this framework,
I recommend that you look at Core Data: Apple’s API for Persisting Data on Mac OS
X by Marcus S. Zarra (Pragmatic Programmers). I also recommend that you look at

336 | Chapter 14: Going Further

www.it-ebooks.info

http://oreilly.com/catalog/9780596805791/
http://oreilly.com/catalog/9780596801601/
http://oreilly.com/catalog/9780596522735/
http://www.it-ebooks.info/

Core Data for iPhone: Building Data-Driven Applications for the iPhone and iPod
Touch by Tim Isted (Addison-Wesley Professional).

Push Notifications
The Apple Push Notification Service (APNS) APNSallows applications to notify their
users of remote events. If the user has turned on Notifications from the Settings appli-
cation, her device will maintain a persistent IP connection to the APNS. Only one
connection is maintained and all third-party notifications are forwarded (by providers)
through Apple’s own servers (see Figure 14-1).

Figure 14-1. A push notification from a provider to a client application

When a device receives a notification for an application and that application isn’t run-
ning, it notifies the user through an alert message or a sound, or by adding a numbered
badge to the application. The APNS does not provide any feedback as to whether the
message was successfully delivered to the user.

Apple argues, “Push notifications serve the same purpose that a back-
ground application would on a desktop computer” and that running
applications in the background really isn’t necessary on a mobile plat-
form outside of core services that the platform provides, such as phone
calls and push email. It is not possible to run your own third-party ap-
plications in the background on the iPhone or iPod touch. Apple says,
“...on a device such as the iPhone, background applications are, for
performance and security reasons, prohibited. Only one application
may be executing at a time.”

However, while Apple has provided detailed documentation regarding how to imple-
ment push notifications on the client (device) side, it provides only a high-level overview
for implementing the provider (server) side.

Details of the APNS are given in the Apple Push Notification Service
Programming Guide available via the iPhone Dev Center.

Push Notifications | 337

www.it-ebooks.info

http://developer.apple.com/iphone/
http://www.it-ebooks.info/

Unfortunately, there is also little in the way of third-party documentation at the time
of this writing as to how to communicate with the APNS to send the messages that are
then pushed to the phone. However, some off-the-shelf third-party implementations
are available. If you intend to implement push notifications in your application, these
are probably the best places to start:

AnyEvent::APNS
Perl wrapper code implementation that acts as a provider allowing you to send
push notifications using the APNS. See http://github.com/typester/anyevent-apns
-perl and http://search.cpan.org/~typester/AnyEvent-APNS/ for more details.

python-apns-wrapper
Python wrapper code for the APNS. See http://code.google.com/p/apns-python
-wrapper/ and http://pypi.python.org/pypi/APNSWrapper/ for more details.

php-apns
A set of PHP scripts which you must run as services and which allow you to send
push notifications using the APNS. See http://code.google.com/p/php-apns/ for more
details.

ruby-apns-daemon
A daemon written in Ruby that acts as a provider to the APNS. The daemon main-
tains a persistent connection to the APNS for best performance. See http://code
.google.com/p/ruby-apns-daemon/ for more details.

javaapns and apns-provider
Two independent Java implementations of the APNS. See http://code.google.com/
p/javapns/ and http://code.google.com/p/apns-provider/ for more details.

In-App Purchase
The Store Kit Framework is an in-application payment engine for paid applications
allowing you to request payment from your users (e.g., for accessing additional
content).

You can also simplify your development by creating a single version of your application
that uses In-App Purchase to unlock additional functionality, eliminating the need to
create two versions of your application: a paid “pro” version and a free “lite” version.
You can distribute your application for free, and then ask users to upgrade using In-
App Purchase.

Only digital items may be sold using In-App Purchase, not physical goods or services,
and these digital goods must be delivered to the application from which they were
purchased (and in addition be available on all devices that the user may own). The
framework leverages the App Store to collect payment, even sending the user the
familiar App Store receipt email she would normally receive after purchasing.

338 | Chapter 14: Going Further

www.it-ebooks.info

http://github.com/typester/anyevent-apns-perl
http://github.com/typester/anyevent-apns-perl
http://search.cpan.org/~typester/AnyEvent-APNS/
http://code.google.com/p/apns-python-wrapper/
http://code.google.com/p/apns-python-wrapper/
http://pypi.python.org/pypi/APNSWrapper/
http://code.google.com/p/php-apns/
http://code.google.com/p/ruby-apns-daemon/
http://code.google.com/p/ruby-apns-daemon/
http://code.google.com/p/javapns/
http://code.google.com/p/javapns/
http://code.google.com/p/apns-provider/
http://www.it-ebooks.info/

Details of the Store Kit Framework and the In-App Purchase service are
given in the Apple Store Kit Programming Guide available via the iPhone
Dev Center.

Core Animation
Built on top of the OpenGL libraries, Core Animation was designed from the ground
up to allow developers to build lightweight but graphically rich UIs, and is the frame-
work that underlies both Apple’s Front Row application and the now almost ubiquitous
Cover Flow effects.

If you want to learn more about the Core Animation framework, I recommend Core
Animation for Mac OS X and the iPhone: Creating Compelling Dynamic User Interfa-
ces by Bill Dudley (Pragmatic Programmers) and Core Animation by Marcus Zarra and
Matt Long (Addison-Wesley).

Game Kit
Despite the name, the Game Kit framework is not just for games, as it offers two im-
portant technologies to developers: peer-to-peer networking using Bonjour over Blue-
tooth, and in-application voice chat. Interestingly, the voice chat features included in
Game Kit work over any network connection, not just the peer-to-peer Bluetooth con-
nections established by the Game Kit framework.

A good general book on peer-to-peer networking with Bonjour, Apple’s name for zero
configuration networking, is Zero Configuration Networking: The Definitive Guide by
Daniel Steinberg and Stuart Cheshire (O’Reilly). You can find some good iPhone-spe-
cific examples using Game Kit in iPhone SDK Development by Bill Dudley and Chris
Adamson (Pragmatic Programmers).

Writing Games
Apple has advertised the iPod touch as “the funnest iPod ever” and is pushing it heavily
as a game platform competing directly with the Nintendo DS and Sony PSP platforms.

However, writing good games is a lot harder than most people would imagine, and is
certainly not within the scope of a book such as this. If you’re interested in developing
games for the iPhone platform, I recommend you look at iPhone Game Development
by Paul Zirkle and Joe Hogue (O’Reilly). You’ll find that this book is a solid guide to
the basics of game development, with good coverage of both graphics and audio topics
as well as coverage of in-game physics engines.

Writing Games | 339

www.it-ebooks.info

http://developer.apple.com/iphone/
http://developer.apple.com/iphone/
http://oreilly.com/catalog/9780596101008/
http://oreilly.com/catalog/9780596159863/
http://www.it-ebooks.info/

Look and Feel
Apple has become almost infamous for its strict adherence to its Human Interface
Guidelines. Designed to present users with “a consistent visual and behavioral experi-
ence across applications and the operating system,” the interface guidelines mean that
(most) applications running on the Mac OS X desktop have a consistent look and feel,
and behave in the same way. Long-time users of the platform generally view applica-
tions that don’t adhere to the guidelines with some suspicion, and even novice users
sometimes get the feeling that there is something “not quite right” about applications
that break them.

Even for developers who are skeptical about whether they really need to strictly adhere
to the guidelines, especially when Apple periodically steps outside them, the Human
Interface Guidelines have remained a benchmark against which the user experience can
be measured.

With the introduction of the iPhone and iPod touch, Apple had to draw up a radically
different set of guidelines describing how user interactions should be managed on a
platform radically unlike the traditional desktop environment.

I heavily recommend that you read the mobile Human Interface Guidelines carefully,
if only because violating them could lead to your application being rejected by the
review team during the App Store approval process.

A copy of the iPhone Human Interface Guidelines is available for down-
load from the App Store Resource Center in the “App Store Approval
Process” section at http://developer.apple.com/iphone/appstore.

However, if you’d like to read more about how these guidelines are interpreted, and
how to design engaging and effective user interfaces, I recommend that you read Pro
gramming the iPhone User Experience, First Edition by Toby Boudreaux (O’Reilly).

Hardware Accessories
If you’re interested in using the External Accessory framework to work with third-party
hardware, you need to consider becoming a member of the Made for iPod/Works with
iPhone Developer Program. Licensed developers gain access to technical documenta-
tion, hardware components, and technical support so that they can develop their own
hardware and software in parallel. More information about this program is available
at http://developer.apple.com/ipod/.

However, if the thought of yet another set of NDAs is off-putting, you might want to
look at iPhone Hacks by David Jurick, Adam Stolarz, and Damien Stolarz (O’Reilly).
Among other things, this book discusses the pinout for the dock and headphone jack

340 | Chapter 14: Going Further

www.it-ebooks.info

http://developer.apple.com/iphone/appstore
http://oreilly.com/catalog/9780596155476/
http://oreilly.com/catalog/9780596155476/
http://developer.apple.com/ipod/
http://oreilly.com/catalog/9780596516642/
http://www.it-ebooks.info/

connectors, allowing you to connect external devices to your iPhone without having to
join the Made for iPod/Works with iPhone Program.

Hardware Accessories | 341

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Index

Symbols
* (asterisk)

in regular expressions, 213
as wildcard in bundle identifiers, 16

\ (backslash) in regular expressions, 213, 215
^ (caret) in regular expressions, 213
$ (dollar sign) in regular expressions, 213
- (minus sign) in method declarations, 46
+ (plus sign)

in method declarations, 46
in regular expressions, 213

A
ABPeoplePickerNavigationController class,

314–319
ABPeoplePickerNavigationControllerDelegate

protocol, 315, 316
ABRecordCopyCompositeName method, 318
accelerometer, 266–270

hardware support for, 249
accelerometer:didAccelerate: method, 270
accessor methods, 20

customizing, 44
accuracy of user location detection, 254
actuator (see vibration capability)
ad hoc distribution, 233–239
ad hoc provisioning profile, 234, 235
ADC (see Apple Developer Connection)
addAttachmentData:mimeType:fileName:

method, 165
address book, using, 314–319
Address Book framework, 315
alert windows, 74
alloc-retain-copy-release cycle, 48

alloc: method, 47, 48
allocating memory for created objects, 47
alpha channel, 124
ambient light sensor, 274
annotating maps, 285–293
AnyEvent::APNS wrapper code, 338
apns-provider implementation, 338
App ID, creating, 15–16
App Rating, 244
App Store, 240

(see also distributing applications)
building for submission to, 240–241
categories, selecting, 243
exposure through, 4
rejection from, reasons for, 244–247, 275
submitting application to, 241–244

App Store Resource Center, 6, 244
Apple Developer Connection (ADC), 8
Apple ID, 6
Apple Push Notification Service (APNS), 337
Apple websites for development, 6
AppleLocale key, 305
Apple’s graphics, using, 245
application bundle, embedding images in, 160
application delegate class, 27, 28–30
application description, 242, 246, 247
application display name, 231, 242
application icon, 225–227, 245
application keywords, 243
application launch image, 227–231
application life cycle, 27
application preferences, 295–305

accessing global device preferences, 305
application rotation, enabling, 232–233
application URL, 243

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

343

www.it-ebooks.info

http://www.it-ebooks.info/

application version numbers, 243, 245
applicationDidFinishLaunching: method, 30,

77
applications

deploying (example), 118
distribution of (see distributing

applications)
putting on iPhone, 37–40

applications, integrating with device, 295–319
address book, using, 314–319
application preferences, 295–305

accessing global preferences, 305
custom URL schemes, 305–310

registering, 306–310
tel: and sms:, 306

media playback, 310–314
assign attribute (properties), 44
asterisk (*)

in regular expressions, 213
as wildcard in bundle identifiers, 16

asynchronous reachability, 148–149
asynchronous requests for data, 167–168
attaching images to email messages, 165
Attribute Inspector, 33, 172
audio input support, 249, 250
AudioToolbox framework, 275
autorelease pools, 48
autoreleased objects, 48, 49
availability date, 244
availability of device for development, 17–18
availability of network, detecting, 145–150

asynchronous reachability, 148–149
synchronous reachability, 147–148

AVAudioSession class, 250
AVAudioSessionDelegate protocol, 251

B
backslash (\) in regular expressions, 213, 215
bandwidth limitations, 246
base URL, specifying, 160
battery monitoring application (example), 108–

118
building interface, 110–111
wiring in Interface Builder, 117–118
writing code, 112–116

battery power, determining user location and,
254

becoming a developer, 5–18

enrolling in iPhone Developer Program, 7,
19

installing iPhone SDK, 8–11
joining Apple Developer Connection

(ADC), 8
preparing device for, 11–18
registration, 5–6

beginGeneratingDeviceOrientationNotificatio
ns method, 232

beginGeneratingPlaybackNotifications:
method, 312

beta versions, iPhone SDK, 8
BLOB data type, 219
Bluetooth support (hardware), 249
Bonjour over Bluetooth, 339
Boolean variables, 112
Briefs application, 40
browser, embedding in app, 150–160

displaying static HTML files, 159–160
Build and Run button (Xcode), 25
building applications, 233–241

ad hoc distribution, 233–239
for App Store distribution, 240–241
developer-to-developer distribution, 240

bundle identifiers, 15
buttons, using for images, 283
buzz (see vibration capability)

C
calling methods, 46
calls, making from applications, 306
camera, 253

hardware support for, 250
canSendMail: method, 162
Capitalize attribute (text fields), 94
caret (^) in regular expressions, 213
casting, 22
categories, App Store, 243
cellForRowAtIndexPath: method, 60, 63, 74
cellular network bandwidth, 246
cellular support, availability of, 249
certificate-signing requests (CSRs), 234
certificates for development, 11, 12–14, 233
certificates for distribution, 234
City Guide application (see guidebook

application)
@class declaration, 69
class methods, 21

declaring, 46

344 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

class variables, 20
classes, 19, 20

declaring and defining, 28, 41–47
object typing, 43
properties, synthesizing, 45
property declarations, 44

declaring with interface, 41
delegate classes (see delegates)
documentation on, obtaining, 29
frameworks and libraries, defined, 21
implementations of, 20, 28, 42
methods, declaring and calling, 45–47
singleton classes, 109
template classes, simplifying, 55–58
view controller classes (see view controllers)
Xcode template classes, simplifying, 55–58

Classes group (Xcode), 26
CLLocationManager class, 255, 257, 272
CLLocationManagerDelegate protocol, 255,

258, 273, 280
Cocoa framework, 335
Cocoa Touch framework, 50
code refactoring, 55
compass (magnetometer), 272–274

hardware support for, 249
compiling applications in Xcode, 25
connecting outlets, 36–37, 62–65
connection:didFailWithError: method, 189
connectionDidFinishLoading: method, 182,

209
Connections Inspector, 36, 62
connectivity (see network connectivity)
contact information, 243
controller (in MVC pattern), 51

for table-view-based applications
connecting to model, 73–75
creating, 57, 59

copy attribute (properties), 44
copy: method, 48
copyright issues, 243, 245
Core Animation framework, 339
Core Data framework, 224, 336
Core Location framework, 254–266

Weather program with (example), 256–
266

Correction attribute (text fields), 94
creating Xcode projects, 23–24
crippled functionality, 246
CSRs (certificate-signing requests), 234

custom URL schemes, 305–310
registering, 306–310
tel: and sms:, 306

customer support URL, 243

D
\d, for numeric characters, 213
\D, for nonnumeric characters, 213
data, 191–224

data entry, 191–195
UITextField class, about, 191–193
UITextView class, about, 193–195

parsing JSON, 199–213
example of, 201–213

parsing XML, 182–183, 195–199
using libxml2, 196–197
using NSXMLParser, 197–199

regular expressions, 213–217
NSPredicate class for, 216
RegexKitLite library, 214–216

retrieving from Internet, 166–189
asynchronous requests, 167–168
Google Weather Service, 168–170
synchronous requests, 166–167
web services, 168–189

storing, 217–224
Core Data framework, 224, 336
in flat files, 217–218
in SQL databases, 218–224

data persistence, 220–224
data sources, 52
databases, adding to projects, 219–220
DataSource pattern, 52
DataSource protocol, 52
dealloc: method, 50
debugging with NSLog(), 34
declaring classes, 28

with interface, 41
declaring methods, 45
declaring properties, 44
defining classes with implementation, 20, 42
degree latitude, in miles, 282
degree longitude, in miles, 282
delegates, 21, 23, 52
deleteRowsAtIndexPaths:withRowAnimation:

method, 89
demo account information, 243
deploying applications (example), 118

Index | 345

www.it-ebooks.info

http://www.it-ebooks.info/

dequeueReusableCellWithIdentifier: method,
63, 98

description of application, 242, 246, 247
design patterns, iPhone, 50–53

delegates and DataSource pattern, 52
MVC (see Model-View-Controller pattern)
views and view controllers, 51

detecting network status, 145–150
asynchronous reachability, 148–149
reachability checks, 189, 246
synchronous reachability, 147–148

developer, becoming, 5–18
enrolling in iPhone Developer Program, 7,

19
installing iPhone SDK, 8–11
joining Apple Developer Connection

(ADC), 8
preparing device for, 11–18
registration, 5–6

Developer Program Portal, 6
developer-to-developer distribution, 240
development certificates, 11, 12–14, 233
development platforms

iPhone SDK (see iPhone SDK)
MonoTouch platform, 325–334
PhoneGap platform, 321–324

device availability for development, 17–18
device hardware (see hardware)
device integration, 295–319

address book, using, 314–319
application preferences, 295–305

accessing global preferences, 305
custom URL schemes, 305–310

registering, 306–310
tel: and sms:, 306

media playback, 310–314
device location (see geolocation; user location)
device movement (see accelerometer; digital

compass)
device preferences, accessing, 305
device UDID, getting, 14–15, 235
devices, registering, 235
didFailLoadWithError: method, 156
didFailWithError: method, 189, 255, 258
didFinishPickingMediaWithInfo: method, 140
didPickMediaItems: method, 312
didReceiveMemoryWarning: method, 50, 71
didSelectRowAtIndexPath: method, 60, 64, 79,

83

didUpdateHeading: method, 273
didUpdateToLocation: method, 255, 258, 265
didUpdateToLocation:fromLocation: method,

280
digital compass (magnetometer), 272–274

hardware support for, 249
display name for application, 231, 242
distributing applications, 225–247

building and signing, 233–241
ad hoc distribution, 233–239
for App Store distribution, 240–241
developer-to-developer distribution,

240
creating application icon, 225–227, 245
creating launch image, 227–231
display names, 231, 242
enabling rotation, 232–233
submitting to App Store, 241–244

reasons for rejection, 244–247, 275
distribution certificates, 234
Document directory, 217, 221
documentation on classes and methods, 29
documents, parsing (see parsing data)
$ (dollar sign) in regular expressions, 213
DOM (Document Object Model) XML parser,

195
done: method, toggling in utility applications,

113
dot syntax, 45
duplication of existing functionality, 245

E
eatblob.c program, 219
edit mode, UITableViewController, 85–105

adding table view cells, 90
deleting table view cells, 89

email, sending, 161–165
attaching images to messages, 165

email address for support, 243
embedding browser in app, 150–160

displaying static HTML files, 159–160
embedding images in application bundle, 160
encryption, for App Store submissions, 242
endGeneratingDeviceOrientationNotifications

method, 232
endGeneratingPlaybackNotifications: method,

312
enrolling in iPhone Developer Program, 7, 19
entering data (from UI), 191–195

346 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

Enterprise iPhone Developer Program, 5
error handling with JSON parsing, 211
escaping characters (regular expressions), 213,

215
event-based parsing, 182

(see also parsing data)
event loops, 21
events, 21
existing functionality, duplication of, 245
exposure through App Store, 4
External Accessory framework, 340

F
fetchContent: method, 183
files, writing and reading (see storing data)
FindNearbyPlace class, 263
first impressions, 170
first responders, 141

data entry, 191, 193
FirstViewController class, 120
flat files, 217–218
flipside view (see utility applications)
FlipsideView.xib file (utility applications), 111,

260
frameworks, 21
Frameworks group (Xcode), 26
free apps with crippled functionality, 246
freeze-dried (see serialization)

G
game development, 339
Game Kit framework, 339
garbage collection, 22
geolocation, 277–293

(see also user location)
annotating maps, 285–293
Where Am I? application, 277–285

GeoNames reverse geocoding service, 256
get-task-allow property, 237
getter attribute (properties), 44
getters (see accessor methods)
global device preferences, 305
global find and replace, 127
Google Weather Service, 168–170

location-specific (example), 256–266
GPS hardware support, 250
Graham, Paul, 3
graphics belonging to Apple, 245

greedy, regular expressions as, 213
guidebook application (example), 55

(see also table-view-based applications)
Add New City interface, 93–100

Save button, 100–105
adding city view, 79–85
adding database to, 219–220
adding image picker to, 133–143
adding navigation controls, 75–77
building model for, 65–71
connecting controller to model, 73–75
creating table view for, 58–65

connecting outlets, 62–65
organizing and navigating code, 61

edit mode, 85–105
adding city entries, 90
deleting city entries, 89

as modal view, 126–132

H
handlerMethod: method, 233
hardware, 249–275

accelerometer, 266–270
ambient light sensor, 274
camera, 253
Core Location framework, 254–266

example, 256–266
determining available support for, 249–251
digital compass (magnetometer), 272–274
integration with (see integrating application

with device)
proximity sensor, 274–275
setting required capabilities, 251–252
vibration capability, 275

hardware accessories, 340
heightForRowAtIndexPath: method, 98
help on classes and methods, getting, 29
HIG (see Human Interface Guidelines)
home screen icon (see icons, for applications)
HTML files, displaying, 159
Human Interface Guidelines (HIG), 245, 340

I
IBOutlet, declaring properties as, 44
Icon-Settings.png file, 297
icons

for applications, 225–227, 245
Refresh button (example), 173

Index | 347

www.it-ebooks.info

http://www.it-ebooks.info/

on bar tabs, 123
id class, 43
Identity Inspector, 173
image picker view controllers, 133–143
image views, 135
imageNamed: method, 71
images

adding to Xcode projects, 71
Apple’s, using, 245
application icon, 225–227, 245
attaching to email messages, 165
embedding in application bundle, 160
launch images, 227–231
Refresh button icon (example), 173
on bar tabs, 123
using buttons for, 283

implementations of classes, 20, 28, 42
#import statement, @class declaration vs., 69
In-App Purchase, 338
Info button, in utility applications, 110
Info.plist file

registering custom URL schemes, 306–310
setting required hardware capabilities, 251

inheritance, 20
init: method, 47
initWith: method, 47
InitWithNibName: method, 52
initWithString: method, 47
inputIsAvailable property, 250
inputIsAvailableChanged: method, 251
insertRowsAtIndexPaths:withRowAnimation:

method, 89
Inspector window (see Attribute Inspector)
installing iPhone SDK, 8–11
instance methods, declaring, 46
instance variables, 20
instances of classes (see objects)
integrating application with device, 295–319

address book, using, 314–319
application preferences, 295–305

accessing global preferences, 305
custom URL schemes, 305–310

registering, 306–310
tel: and sms:, 306

media playback, 310–314
interface (see user interface)
interface, declaring classes with, 28
Interface Builder, 32–34

adding navigation bars in, 154

connecting outlets in, 36–37, 62–65
views, building, 51
wiring BatteryMonitor app in, 117–118

Interface Builder Identity section, 173
interface classes, 41
@interface declarations, 41, 53, 59
Internet connectivity (see network

connectivity)
iPhone

application life cycle, 27
fundamental design patterns, 50–53

delegates and DataSource pattern, 52
MVC (see Model-View-Controller

pattern)
views and view controllers, 51

hardware (see hardware)
preparing for development, 11–18

creating App ID, 15
creating development certificate, 12
creating mobile provisioning profile, 16
getting device UDID, 14
making device available, 17

putting applications on, 37–40
Settings application, 295, 301
web applications, 336

iPhone Dev Center, 6
iPhone Developer Program

enrolling in, 7, 19
license agreement, 244
Standard and Enterprise versions, 5
University version, 7

iPhone Program Portal, 233
iPhone SDK, 1–4, 335

installing, 8–11
pros and cons of, 1–3
release cycle with, 3–4

iPhone Simulator, differences from real life, 9
iPod Touch

hardware (see hardware)
preparing for development, 11–18

creating App ID, 15
creating development certificate, 12
creating mobile provisioning profile, 16
getting device UDID, 14
making device available, 17

user location, determining, 254
isKindOfClass: method, 46, 149
iTunes Connect, 6, 242

348 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

J
javaapns implementation, 338
JSON, parsing, 199–213

regular expressions for, 213–217
NSPredicate class for, 216
RegexKitLite library, 214–216

with Twitter search services (example), 201–
213

json-framework library, 199
with Twitter search service, 201–213

K
kCLErrorDenied error, 256
kCLErrorLocationUnknown error, 255
kCLHeadingFilterNone value, 273
keyboard type, 246
keychain, installing development certificates in,

12–14
Keychain Access application, 12, 234
keywords, application, 243
kReachabilityChangedNotification event, 148
kUTTypeMovie media type, 250

L
landscape mode (see rotation of application,

enabling)
latitude, detecting (see Core Location

framework; geolocation)
latitude degree, in miles, 282
launch images, 227–231
libicucore.dylib library, 214
libraries, 21
Library folder, 17
Library window, 33
libxml2 library, 182

parsing XML with, 196–197
license, developer, 6
life cycle, iPhone application, 27
light sensor, 274
linear acceleration (see accelerometer)
lite apps with crippled functionality, 246
loadingActivityIndicator property, 261
loadView: method, 52
localization of application, 244
location of device (see geolocation; user

location)
location services, disabled, 273
locationManager property, 280

locationManager:didUpdateToLocation:from
Location: method, 281, 284, 304

locationManagerShouldDisplayHeadingCalibr
ation: method, 273

longitude, detecting (see Core Location
framework; geolocation)

longitude degree, in miles, 282
look-and-feel requirements, 340

M
magnetometer (digital compass), 272–274

hardware support for, 249
mail (see email, sending)
mailComposeController:didFinishWithResult

:error: method, 163
main() function, 27
main event loop, 21, 27
main.m file, 26

creating autorelease pool, 48
MainView.xib file (utility applications), 110
MainWindow.xib file (tab bar applications),

119
making phone calls from applications, 306
MapKit framework, 256, 277–293

annotating maps, 285–293
defining user location, 277–285

mapping (see MapKit framework)
maps, annotating, 285–293
MapViewController class, 288, 289
marketing, 4
media playback, 310–314
Media Player framework, 310
media types for video capture, 253
memory management, 22, 47–50

alloc-retain-copy-release cycle, 48
object creation, 47
responding to memory warnings, 50

messages, 21, 30
calling methods with, 46

MessageUI.framework framework, 161
messaging, from application, 306
methods, 20

accessor methods, 20
customizing, 44

calling, 46
class (static) methods, 21
declaring, 45
documentation on, obtaining, 29

MFMailComposeResult constant, 163

Index | 349

www.it-ebooks.info

http://www.it-ebooks.info/

MFMailComposeViewController class, 161–
165

attaching images to messages, 165
MFMailComposeViewControllerDelegate

protocol, 162
miles, longitude and latitude in, 282
minimal user functionality, 247
minus sign (-) in method declarations, 46
MKAnnotation protocol, 290
mobile provisioning profiles, 11, 16–17, 233
modal view controllers, 125–132
model (in MVC pattern), 51

for table-view-based applications
connecting controller to, 73–75
creating, 65–71

Model-View-Controller (MVC) pattern, 23, 50,
51

Mono framework, 325
MonoDevelop environment, 326
MonoTouch platform, 325–334
movement, device (see accelerometer; digital

compass)
MPMediaItem class, 314
MPMediaItemCollection class, 310
MPMediaItemPropertyArtwork key, 314
MPMediaItemPropertyTitle key, 314
MPMediaPickerController class, 310, 311,

312
MPMediaPickerControllerDelegate protocol,

310
MPMusicPlayerController class, 310, 311, 312
multiline text entry (see UITextView class)
multivalue properties, 318
MVC (see Model-View-Controller pattern)

N
names

for applications, 231, 242
for methods, 46
for provisioning profiles, 16
for Xcode template classes, 55

namespace collision, 56
native development platforms

iPhone SDK (see iPhone SDK)
MonoTouch platform, 325–334
PhoneGap platform, 321–324

native vs. web applications, 336
navigation bar, 132

(see also UINavigationBar class)

navigation bar button items, 132
navigation controls, in table-view-based

applications, 75–77
network connectivity, 145–189

bandwidth limitations, 246
Bonjour over Bluetooth, 339
detecting network status, 145–150

asynchronous reachability, 148–149
reachability checks, 189, 246
synchronous reachability, 147–148

embedding browser in app, 150–160
displaying static HTML files, 159–160

hardware support for, 249
retrieving data from Internet, 166–189

asynchronous requests, 167–168
populating UI with parsed data, 187–

188
synchronous requests, 166–167
web services, 168–189
as XML (see XML, parsing)

sending email, 161–165
attaching images to messages, 165

network performance, 3
NetworkMonitor project (example), 147
new projects, creating, 23–24
NIB files, 31, 32

(see also .xib files)
nibBundle property, 52
nibName property, 52
nil object, calling methods on, 47
nonatomic attribute (properties), 44
NSDictionary class, 209
NSFileManager class, 217
NSIndexPath class, 82
NSLog() function, 34
NSMutableData objects, 168
NSMutableString class, 67
NSNotificationCenter class, 232, 313
NSObject subclasses, creating, 65
NSPredicate class, 9, 216
NSString vs. NSMutableString class, 67
NSTemporaryDirectory method, 218
NSUrlConnection class, 166–189

asynchronous requests, 167–168
synchronous requests, 166–167
web services, 168–189

Google Weather Service, 168–170
parsing XML (see XML, parsing)

350 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

populating UI with parsed data, 187–
188

NSURLRequest class, 155
NSXMLDocument class, 9, 182
NSXMLParser class, 197–199

O
object model, Objective-C, 21–23
object-oriented programming, 19–21
object typing, 43
Objective-C programming, 19–23, 41–53, 335

classes, declaring and defining, 28, 41–47
object typing, 43
properties, synthesizing, 45
property declarations, 44

iPhone design patterns, 50–53
delegates and DataSource pattern, 52
MVC (see Model-View-Controller

pattern)
views and view controllers, 51

memory (see memory management)
methods, declaring and calling, 45–47
object model, 21–23
object-oriented programming, 19–21
syntax basics, 23

ObjectiveResource framework, 200
objects, 19, 20

allocating memory for, 47
casting (see casting)
messages to (see messages)
serialized (see serialization)

objectWithString:error method, 211
Organizer window (Xcode), 14

status light for device, 17
Use for Development option, 17

orientation of UI, changing, 232–233
OS compatibility issues, 246
Other Sources group (Xcode), 26
outlets, connecting, 36–37, 62–65

P
parser:didEndElement:namespaceURI:qualifie

dName: method, 198
parser:didStartElement:namespaceURI:qualifi

edName:attributes: method, 198
parser:foundCharacters: method, 198
parsing data

JSON documents, 199–213

example of, 201–213
populating UI with data from, 187–188
regular expressions for, 213–217

NSPredicate class for, 216
RegexKitLite library, 214–216

XML documents, 182–183, 195–199
using libxml2, 196–197
using NSXMLParser, 197–199

.pch files, 26
peoplePickerDelegate property, 315
peoplePickerNavigationController:shouldCon

tinueAfterSelectingPerson: method,
316

peoplePickerNavigationController:shouldCon
tinueAfterSelectingPerson:property:i
dentifier: method, 316, 319

peoplePickerNavigationControllerDidCancel:
method, 316

PerformHTMLXPathQuery method, 196
PerformXMLXPathQuery method, 196
persistent data, 220–224
phone calls, making, 306
phone number data, retrieving, 305
PhoneGap platform, 321–324
PhoneGapLib library, 322
php-apns scripts, 338
physical location of device (see geolocation;

user location)
pitch, defined, 267
pixel alignment, iPhone Simulator, 10
platforms (see development platforms)
playing media in application, 310–314
plus sign (+)

in method declarations, 46
in regular expressions, 213

populateArray:fromNodes: method, 183
portrait mode (see rotation of application,

enabling)
positioning (see Core Location framework;

digital compass)
#pragma mark declaration, 61
preferences, application, 295–305

accessing global device preferences, 305
PreferenceSpecifiers array, 298
prefix files, 26, 286
preparing device for development, 11–18

creating App ID, 15
creating development certificate, 12
creating mobile provisioning profile, 16

Index | 351

www.it-ebooks.info

http://www.it-ebooks.info/

getting device UDID, 14
making device available, 17

prerelease versions, iPhone SDK, 8
presentModalViewController: method, 253
presentModalViewController:animated:

method, 161
price information in app description, 246
private frameworks, 245
Products group (Xcode), 26
Project Find window, 127
project window (Xcode), 24
projects, 23–24

adding databases to, 219–220
adding images to, 71
connecting outlets in Interface Builder, 36–

37, 62–65
distributing (see distributing applications)
exploring, 25–31
PhoneGap projects, building, 323
putting applications on iPhone, 37–40
viewing in Interface Builder (see Interface

Builder)
properties, 30

customizing accessor methods for, 44
declaring, 44
dot syntax, 45
synthesizing, 45

@property declarations, 44, 112
protocols, 21
provisioning profiles, 16–17, 233

for ad hoc distribution, 234, 235
for development, 11

proximity sensor, 274–275
hardware support for, 250

proximityChanged: method, 275
proximityMonitoringEnabled property, 274
publishing to App Store (see distributing

applications)
push notifications, 337
pushedGo: method, 155, 162, 289
python-apns-wrapper code, 338

Q
quantified patterns (regular expressions), 213
queryServiceWithParent: method, 212

R
Rails-based services, 200

rating of application, 244
reachability checks, 189, 246
Reachability class, 145–150
reachabilityChanged: method, 149
reading from files (see storing data)
readonly attribute (properties), 44
refactoring, 55
Refactoring window, 56
reference counting, 22
Refresh button, 173
refreshView: method, 171, 173
RegexKitLite library, 214–216
registering as developer, 5–6
registering custom URL schemes, 306–310
registering devices, 235
regular expressions (regexes), 213–217

NSPredicate class for, 216
RegexKitLite library, 214–216

rejection from App Store, 244–247, 275
release cycle, 3–4
release: method, 48
releasing allocated memory, 48
REpresentational State Transfer (REST), 168

(see also web services, using)
resigning first responder, data entry, 191, 193
resizing views, 84
Resources group (Xcode), 26
responder chain, 141
retain attribute (properties), 44
retain: method, 48
retrieving data from Internet, 166–189

asynchronous requests, 167–168
synchronous requests, 166–167
web services, 168–189

Google Weather Service, 168–170
as XML (see XML, parsing)

reuse identifier string, 63
reverse geocoding, 256
roll, defined, 267
rotation of application, enabling, 232–233
Ruby on Rails, 200
ruby-apns-daemon daemon, 338

S
\s, for whitespace characters, 214
\S, for nonwhitespace characters, 214
sandboxed applications, 217
Save button, 100–105
Saved Photos folder, 141

352 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

SAX (Simple API for XML) parser, 195
(see also NSXMLParser class)

SBFormattedPhoneNumber key, 305
SCNetworkReachability interface, 150
SDK for iPhone (see iPhone SDK)
SecondView.xib file (tab bar applications),

120
SecondViewController class, 121
selection type (table cells), 94
sender objects, 46
sending email, 161–165

attaching images to messages, 165
sendSynchronousRequest: method, 167
sensors, 249–275

accelerometer, 266–270
ambient light sensor, 274
camera, 253
Core Location framework, 254–266

example, 256–266
digital compass (magnetometer), 272–274
hardware support for, 249–252

determining availability, 249–251
setting required capabilities, 251–252

proximity sensor, 274–275
vibration capability, 275

serialization, 32
services (see web services, using)
setEditing:animated: method, 86, 87, 92
setter attribute (properties), 44
Settings application, 295, 301
Settings.bundle file, 295
shouldAutorotateToInterfaceOrientation:

method, 232
showsUserLocation property, 280
signing applications, 233–241

ad hoc distribution, 233–239
for App Store distribution, 240–241
developer-to-developer distribution, 240

SimpleAnnotation class, 290, 292
simplifying template classes, 55–58
Simula-derived languages, 21
simulator (see iPhone Simulator)
single-line text entry (see UITextField class)
single-screen tabbed views (see tab bar

applications)
single-value properties, 318
singleton classes, 109
size of views, changing, 84
Size tab (Inspector window), 232

Skyhook Wireless, 254
SMS messages, sending, 306
sms: URL scheme, 306
speaker support (hardware), 249
splash screens (see launch images)
SQL databases for data storage, 218–224
SQLite library, 218
Standard iPhone Developer Program, 5
starting Xcode, 8
static HTML files, displaying, 159
static methods, 21
Store Kit Framework, 338
storing data, 217–224

Core Data framework, 224, 336
in flat files, 217–218
in SQL databases, 218–224

stringByEvaluatingJavaScriptFromString:
method, 160

stringWithContentsOfFile:encoding:error:
method, 217

stringWithString: method, 48
strongly typed declarations, 43
subclasses, 20

of NSObject class, 65
submitting to App Store, 241–244

reasons for rejection, 244–247, 275
superclasses, 20
support email address, 243
support URL, 243
switching views in utility applications, 110
switchThrown: method, 260
synchronous reachability, 147–148
synchronous requests for data, 166–167
syntax, Objective-C, 23
@synthesize declarations, 30, 45
synthesizing properties, 44, 45
SystemConfiguration.framework framework,

146

T
tab bar applications, 119–124

adding tab bar items, 122–123
refactoring template for, 120–121

tab bar icons, 123
table-view-based applications, 55–105

adding navigation controls, 75–77
building model for, 65–71
creating table view, 58–65

connecting outlets, 62–65

Index | 353

www.it-ebooks.info

http://www.it-ebooks.info/

organizing and navigating code, 61
view controllers

adding, 79–85
connecting to model, 73–75
edit mode, 85–105

table views
adding cells to, 90
connecting outlets, 62–65
creating, 58–65

organizing and navigating code, 61
deleting cells from, 89
improper handling of, 246
metadata input into cells, 93–100
saving input data, 100–105

tableView:cellForRowAtIndexPath: method,
87, 101, 128, 137

tableView:commitEditingStyle:forRowAtInde
xPath: method, 89

tableView:didSelectRowAtIndexPath: method,
91, 128, 210

tableView:editingStyleForRowAtIndexPath:
method, 87

tableView:heightForRowAtIndexPath:
method, 138

tableView:numberOfRowsInSection: method,
60, 74, 128, 137

edit mode and, 86
Tag attribute (UIView), 95
Tango Desktop Project, 227
technical support URL, 243
tel: URL scheme, 306
telephone calls, making, 306
telephone number data, retrieving, 305
template classes, simplifying, 55–58
temporary files, creating, 218
text messages, sending, 306
textFieldDidEndEditing: method, 193
textFieldShouldBeginEditing: method, 192
textFieldShouldEndEditing: method, 193
textFieldShouldReturn: method, 193
third-party private frameworks, 245
ThirdViewController class, 123
ThirdViewController.xib file, 122
toggle switch (see battery monitoring

application (example))
transparency, tab bar icons, 124
tree-based parsing, 182

(see also parsing data)
trends application (see Twitter search service)

triggering telephone calls, 306
Twitter search service, 201–213
two-screen views (see utility applications)
typing (see object typing)

U
UDID of device, getting, 14–15, 235
UI (see user interface)
UIAccelerometerDelegate protocol, 269
UIActivityIndicator class, 261
UIActivityIndicatorView class, 172
UIActivityIndicatorViewer class, 173
UIAlertView class, mocking up functionality

with, 74
UIAlertViewDelegate protocol, 158
UIApplication class, 23
UIBarButtonItem class, 100, 132
UIBarButtonSystemItemAdd class, 130
UIDevice class, 108

accessing proximity sensor via, 274
limitations of, 110

UIDevice-Reachability extensions, 150
UIDeviceBatteryState class, 114
UIDeviceProximityStateDidChangeNotificatio

n notification, 275
UIImage class, 67

creating with imageNamed: method, 71
UIImageJPEGRepresentation() function, 165
UIImagePickerController class, 138
UIImagePickerControllerDelegate protocol,

139
UIImagePickerControllerSourceTypeCamera

class, 140, 253
UIImagePickerControllerSourceTypePhotoLib

rary class, 140
UIImagePickerControllerSourceTypeSavedPh

otosAlbum class, 140
UIImagePNGRepresentation() function, 165
UIImageView class, 135

resizing view, 84
UIKit framework, 27

pixel alignment on iPhone Simulator, 10
UINavigationBar class, 132

for embedded web browser, 152
Interface Builder and, 154

UINavigationController class, 74
UINavigationControllerDelegate protocol,

139, 315
UIPrerenderedIcon flag (Info.plist), 226

354 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

UIRequiredDeviceCapabilities key, 252
UISwitch class, 112

wiring toggle switch in Interface Builder,
117

UITableView applications, 55–105
adding navigation controls, 75–77
building model for, 65–71
creating table view, 58–65
UITableViewController edit mode, 85–105
view controller, connecting to model, 73–

75
view controller, creating, 79–85

UITableView class, improper handling of, 246
UITableViewCell class

allowing metadata input, 93–100
saving data input, 100–105

UITableViewCellEditingStyleDelete class, 87
UITableViewCellEditingStyleInsert class, 88
UITableViewCellSelectionStyleNone class, 92
UITableViewController edit mode, 85–105

adding table view cells, 90
deleting table view cells, 89

UITableViewDataSource protocol, 59
UITableViewDelegate protocol, 59, 60, 208
UITextField class, 94, 191–193

as first responder, 141
UITextFieldDelegate protocol, 192
UITextView class, 191, 193–195

dismissing UITextView, 193
as first responder, 141
resizing view, 84

UITextViewDelegate protocol, 193
UIView class, Tag attribute, 95
UIViewController class, 20

viewDidLoad: method, 73
UIWebView class, 150–160

displaying static HTML files, 159–160
getting data out of, 160

UIWebViewDelegate protocol, 156
unique device identifier (see UDID of device,

getting)
University iPhone Developer Program, 7
updateView: method, using with parsed data,

187
URLs

for application and support, 243
custom schemes for, 305–310

registering, 306–310
tel: and sms:, 306

loading inside application (see UIWebView
class)

Use for Development option (Organizer
window), 17

User Interaction Enabled box, 283
user interface

enabling rotation, 232–233
entering data, 191–195
Human Interface Guidelines (HIG), 245
importance of (to users), 170
look-and-feel guidelines, 340

user location
annotating maps, 285–293
compass (see digital compass)
Core Location framework for (see Core

Location framework)
MapKit framework for (see MapKit

framework)
Where Am I? application, 277–285

utility applications, 107–118
using web services (example), 170–189

V
variables, 20

casting (see casting)
version numbers, 243, 245
vibration capability, 250, 275
video capture, 250, 253
video selection (see image picker view

controllers)
view controllers, 27, 30–31, 51

class name for, changing, 57
edit mode, 85–105

adding table view cells, 90
deleting table view cells, 89

FirstViewController class, 120
image pickers, 133–143
loadView: method, 52
modal, 125–132
navigation (see navigation controllers)
in table-view-based applications

adding, 79–85
connecting to model, 73–75

for tables (see table views)
view property (view controller), 52
viewDidLoad: method, 73, 83, 100

utility applications, 114
views, 51

main and flipside (see utility applications)

Index | 355

www.it-ebooks.info

http://www.it-ebooks.info/

managing with UIViewController, 20
multiple on same data set (see tab bar

applications)
as part of MVC pattern, 51
resizing, 84
table views

adding cells to, 90
connecting outlets, 62–65
creating, 58–65
deleting cells from, 89
metadata input into cells, 93–100
saving input data, 100–105

viewWillAppear: method, 114
viewWillDisappear:animated: method, 155

W
\w, for alphanumeric characters, 214
\W, for nonalphanumeric characters, 214
weakly typed declarations, 43
weather service (Google), 168–170

location-specific (example), 256–266
web applications, developing, 336
web browser, embedding in app, 150–160

displaying static HTML files, 159–160
web services, using, 168–189

Google Weather Service, 168–170
parsing XML (see XML, parsing)

webView:didFailLoadWithError: method, 156
WebViewController class, 151, 152
webViewDidFinishLoad: method, 156
webViewDidStartLoad: method, 156
Where Am I? application, 277–285
WiFi-based positioning system, 254
WiFi support, availability of, 249
wildcards in bundle identifiers, 16
wireframing, 40
With XIB for user interface (checkbox), 121
withRowAnimation: method, 89
writeToFile:atomically:encoding:error:

method, 217
writing games, 339
writing to files (see storing data)
WWDR Intermediate certificate, 13

X
Xcode, starting (to test installation), 8
Xcode Organizer window, 14

status light for device, 17

Use for Development option, 17
Xcode Utility Application template, 107
.xib files, 26

(see also NIB files)
renaming, 57

XML, parsing, 182–183, 195–199
with libxml2, 196–197
with NSXMLParser, 197–199
populating UI with data from, 187–188
regular expressions for, 213–217

NSPredicate class for, 216
RegexKitLite library, 214–216

XPath wrappers, 182
XPathQuery wrappers, 196

Y
yaw, defined, 267

356 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author
Alasdair Allan is a senior research fellow in astronomy at the University of Exeter. As
part of his work there, he is building a distributed peer-to-peer network of telescopes
that, acting autonomously, will reactively schedule observations of time-critical events.
On the side, Alasdair runs a small technology consulting business writing bespoke
software and building open hardware, and he is currently developing a series of iPhone
applications to monitor and manage cloud-based services and distributed sensor
networks.

Colophon
The animal on the cover of Learning iPhone Programming is a lapwing (Vanellus vanel-
lus), also known as a northern lapwing, a peewit, or a green plover. This wading bird
is 11–13 inches long with a 26–28 inch wingspan, a black crest, and rounded wings.
Although its plumage is predominantly black and white, the upperparts are metallic
green or bronze. The name lapwing may refer to the sound its wings make in flight, to
its erratic flight pattern, or to its practice of pretending to have a broken wing in order
to fool predators. The name peewit mimics the sound of its call. One of the lapwing’s
unique habits is the tumbling flight performed by the male during breeding season: it
flies up, wheels, darts down, and climbs again, all while making its shrill cry.

The lapwing is common throughout the United Kingdom, Europe, and Asia, and
occasionally makes its way to Alaska and Canada. It has an extensive range and may
winter as far south as Africa, India, and China. The lapwing migrates in large flocks,
which can be found on farmland, pastures, and wetlands searching for worms and
insects.

Lapwing populations have declined since the 1980s, as the species has been affected
by intensive agricultural practices, increases in grazing density, and climate change. It
is now protected in the European Union, although parts of the Netherlands still enjoy
the traditional hunt for the first lapwing egg of the year, thought to be a herald of spring.
This hunt is allowed only from March 1 to April 9, and the actual collection of eggs is
prohibited by law.

The cover image is from The Riverside Natural History. The cover font is Adobe ITC
Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad Con-
densed; and the code font is LucasFont’s TheSansMonoCondensed.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

	Table of Contents
	Preface
	Who Should Read This Book?
	What Should You Already Know?
	What Will You Learn?
	What’s in This Book?
	Conventions Used in This Book
	Using Code Examples
	How to Contact Us
	Safari® Books Online
	Acknowledgments

	Chapter 1. Why Go Native?
	The Pros and Cons
	Why Write Native Applications?

	The Release Cycle
	Build It and They Will Come

	Chapter 2. Becoming a Developer
	Registering As an iPhone Developer
	Enrolling in the iPhone Developer Program
	The Apple Developer Connection
	Installing the iPhone SDK
	Preparing Your iPhone or iPod touch
	Creating a Development Certificate
	Getting the UDID of Your Development Device
	Creating an App ID
	Creating a Mobile Provisioning Profile
	Making Your Device Available for Development

	Chapter 3. Your First iPhone App
	Objective-C Basics
	Object-Oriented Programming
	The Objective-C Object Model
	The Basics of Objective-C Syntax

	Creating a Project
	Exploring the Project in Xcode
	Overview of an iPhone application
	The application delegate
	The view controller

	Our Project in Interface Builder
	Adding Code
	Connecting the Outlets in Interface Builder
	Putting the Application on Your iPhone

	Chapter 4. Coding in Objective-C
	Declaring and Defining Classes
	Declaring a Class with the Interface
	Defining a Class with the Implementation
	Object Typing
	Properties
	Synthesizing Properties
	The Dot Syntax
	Declaring Methods
	Calling Methods
	Calling Methods on nil

	Memory Management
	Creating Objects
	The Autorelease Pool
	The alloc, retain, copy, and release Cycle
	The dealloc Method
	Responding to Memory Warnings

	Fundamental iPhone Design Patterns
	The Model-View-Controller Pattern
	Views and View Controllers
	The Delegates and DataSource Pattern

	Conclusion

	Chapter 5. Table-View-Based Applications
	Simplifying the Template Classes
	Creating a Table View
	Organizing and Navigating Your Source Code
	Connecting the Outlets

	Building a Model
	Adding Images to Your Projects

	Connecting the Controller to the Model
	Mocking Up Functionality with Alert Windows

	Adding Navigation Controls to the Application
	Adding a City View
	Edit Mode
	Deleting a City Entry
	Adding a City Entry
	The “Add New City...” Interface
	Capturing the City Data

	Chapter 6. Other View Controllers
	Utility Applications
	Making the Battery Monitoring Application
	Building our interface
	Writing the code
	Wiring the application in Interface Builder

	Tab Bar Applications
	Refactoring the Template
	Creating the first tab
	Creating the second tab
	Wrapping up the refactoring

	Adding Another Tab Bar Item
	Finishing Up

	Modal View Controllers
	Modifying the City Guide Application

	The Image Picker View Controller
	Adding the Image Picker to the City Guide Application

	Chapter 7. Connecting to the Network
	Detecting Network Status
	Apple’s Reachability Class
	Synchronous reachability
	Asynchronous reachability
	Using Reachability directly

	Embedding a Web Browser in Your App
	A Simple Web View Controller
	Displaying Static HTML Files
	Getting Data Out of a UIWebView

	Sending Email
	Getting Data from the Internet
	Synchronous Requests
	Asynchronous Requests
	Using Web Services
	The Google Weather Service
	Building an application
	Parsing the XML document
	Populating the UI
	Tidying up

	Chapter 8. Handling Data
	Data Entry
	UITextField and Its Delegate
	UITextView and Its Delegate
	Dismissing the UITextView

	Parsing XML
	Parsing XML with libxml2
	Parsing XML with NSXMLParser

	Parsing JSON
	The Twitter Search Service
	The Twitter Trends Application
	Refactoring
	Retrieving the trends
	Building a UI
	Parsing the JSON document
	Tidying up

	Regular Expressions
	Introduction to Regular Expressions
	RegexKitLite
	Faking regex support with the built-in NSPredicate

	Storing Data
	Using Flat Files
	Reading and writing text content
	Creating temporary files
	Other file manipulation

	Storing Information in an SQL Database
	Adding a database to your project
	Data persistence for the City Guide application
	Refactoring and rethinking

	Core Data

	Chapter 9. Distributing Your Application
	Adding Missing Features
	Adding an Icon
	Adding a Launch Image
	Changing the Display Name
	Enabling Rotation

	Building and Signing
	Ad Hoc Distribution
	Obtaining a distribution certificate
	Registering devices
	Creating a provisioning profile
	Building your application for ad hoc distribution
	Distributing an ad hoc build

	Developer-to-Developer Distribution
	App Store Distribution
	Building your application for App Store distribution

	Submitting to the App Store
	The App Store Resource Center

	Reasons for Rejection

	Chapter 10. Using Sensors
	Hardware Support
	Determining Available Hardware Support
	Network availability
	Camera availability
	Audio input availability
	GPS availability

	Setting Required Hardware Capabilities

	Using the Camera
	The Core Location Framework
	Location-Dependent Weather
	Using the GeoNames reverse geocoding service
	Modifying the Weather application
	Tidying up

	Using the Accelerometer
	Writing an Accelerometer Application

	Using the Digital Compass
	Accessing the Proximity Sensor
	Using Vibration

	Chapter 11. Geolocation and Mapping
	User Location
	Annotating Maps

	Chapter 12. Integrating Your Application
	Application Preferences
	Accessing Global Preferences

	Custom URL Schemes
	Using Custom Schemes
	Making a telephone call
	Sending an SMS message

	Registering Custom Schemes

	Media Playback
	Using the Address Book
	Interactive People Picking
	Programmatic People Picking

	Chapter 13. Other Native Platforms
	PhoneGap
	Download and Installation
	Building a PhoneGap Project

	MonoTouch
	Download and Installation
	Building a MonoTouch Project

	Chapter 14. Going Further
	Cocoa and Objective-C
	The iPhone SDK

	Web Applications
	Core Data
	Push Notifications
	In-App Purchase
	Core Animation
	Game Kit
	Writing Games
	Look and Feel
	Hardware Accessories

	Index

